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A B S T R A C T   

The importance of faecal sludge management is gaining recognition. However, methods are still lacking to 
reasonably estimate the quantities and qualities (Q&Q) that need to be managed, which makes the planning for 
and implementing of management solutions quite difficult. The objective of this study was to collect and analyse 
Q&Q of faecal sludge at a citywide scale, and to evaluate whether “SPA-DET” data (¼> spatially analysable - 
demographic, environmental and technical) could then be used as predictors of Q&Q of faecal sludge. 60 field 
samples and questionnaires from Hanoi and 180 from Kampala were analysed. Software tools were used in an 
iterative process to predict total solids (TS) and emptying frequency in both Hanoi, Vietnam and Kampala, 
Uganda. City-specific data could be predicted with types of “SPA-DET” data as input variables, and model 
performance was improved by analysing septic tanks and pit latrines separately. Individual models were built for 
TS concentrations and emptying frequency. In addition, a model was built across both cities for emptying fre-
quency of septic tanks based on number of users and containment volume, indicating predictive models can be 
relevant for multiple cities. Number of users, containment volume, truck volume and income level were iden-
tified as the most common variables for the correction function. Results confirm the high intrinsic variability of 
faecal sludge characteristics, and illustrate the importance of moving beyond simple reporting of city-wide 
average values for estimations of Q&Q. The collected data and developed scripts have been made available 
for replication in future studies.   

1. Introduction 

Globally, one-third of the world’s population is served by non- 
sewered sanitation, which is commonly referred to as faecal sludge 
management (Strande et al., 2014). Faecal sludge is produced and stored 
onsite in different types of containment technologies, such as pit latrines 
and septic tanks. Acknowledgement of the importance of faecal sludge 
management is rapidly increasing, as evidenced by inclusion in the 
sustainable development goals (SDGs) (United Nations, 2015). With 
adequate management of the entire service chain, faecal sludge man-
agement can provide sustainable sanitation and protection of public 
health (Dodane et al., 2012). However, there are many challenges 
remaining in order to reach this status, from instituting frameworks and 

responsibilities and integrated planning methodologies, to accessibility 
and affordability of emptying individual containments at the household 
level, as a result, faecal sludge frequently ends up being dumped directly 
into the urban environment (Schoebitz et al., 2017). 

One major problem, is a lack of methods to determine the total 
quantities and qualities (Q&Q) of faecal sludge that need to be managed 
at community to citywide scales. This is difficult, as containments are 
typically underground, not standardized, and informally constructed 
with no official records. This can lead to over- or underestimation of 
required management and treatment capacity (Bassan and Strande, 
2011; Fichtner and Associates, 2008), resulting in dysfunctional man-
agement and treatment systems. Attempts to determine Q&Q of faecal 
sludge at city-wide scales have been time and resource intensive 
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(Fanyin-Martin et al., 2017; Strande et al., 2018), begging the need for 
more efficient approaches to data collection (Strande et al., (in prepa-
ration)). In addition to systematic approaches to data collection, 
analytical approaches for data analysis are needed to increase the effi-
ciency and validity of assumptions for management solutions that can be 
made from collected data. One difficulty is that although models have to 
account for variability they frequently neglect outliers, whereas in faecal 
sludge management the variability is so high that data segments sepa-
rated by orders of magnitude are not considered outliers (Gold et al., 
2017; Strande et al., 2014). This variability needs to be taken into ac-
count during data collection, to ensure the variability is captured (e.g. 
containment type, origin, retention time), and also in data analysis. 

Advanced models have been developed for centralized, sewer-based 
wastewater treatment influents, operations and process control (Martin 
and Vanrolleghem (2014). There are many situations where models 
could be useful, for example knowing Q&Q of incoming faecal sludge to 
improve designs and operation of management and treatment solutions 
However, modelling attempts for faecal sludge have only just begun. 
Attempts at developing models for Q&Q of faecal sludge at macro-scales 
relevant for planning have included numerical modelling from a mass 
balance perspective based on empirical observations. For example 
accumulation rates (Brouckaert et al., 2013; Kimuli et al., 2016; Lugali 
et al., 2016; Todman et al., 2015), or characteristics of the accumulated 
sludge in containments (Elmitwalli, 2013). However, these models were 
based on observations of faecal sludge in containment at the single 
household level, which due to the high variability of faecal sludge, will 
likely not be representative for predicting trends on a larger-scale (i.e. 
community to citywide). 

Prior to the design of faecal sludge management solutions, a pre- 
study is commonly carried out. The focus is often on questionnaires, 
with limited resources for characterization (Ross et al., 2016). The re-
sults are often unreliable due to the high variability of faecal sludge, in 
addition to the high variability of analytical results due to a lack of 
standard methods and rigorous quality assurance and quality control 
procedures (QA/QC). The most common approach has been to report 
simple average values, but with standard deviations that are frequently 
as high as mean values, it is clear that Q&Q of faecal sludge do not follow 
a normal distribution and additional summary statistics are required 
(Bassan et al., 2013; Gold et al., 2017; Strande et al., 2018). 

A model is a systematic means of describing a system, and depending 
on objectives and resources, different models and model structures are 
used (James et al., 2013). Predictive models for management solutions 
can be built with more readily available input variables, that can be used 
to predict output variables that are more resource intensive to determine 
(James et al., 2013). For example, previous research has demonstrated 
that Q&Q of faecal sludge can be significantly different based on types of 
“SPA-DET” data (¼> spatially analysable - demographic, environmental 
and technical) (Strande et al., 2018). Therefore, more readily collected 
types of data such as income level, water connection, containment type, 
and number of users, could potentially be used as predictors of Q&Q 
(Strande et al., 2018). 

The objective of this study was to rigorously collect and analyse Q&Q 
of faecal sludge at a citywide scale, and to evaluate whether SPA-DET 
data could then be used as predictors of Q&Q of faecal sludge. This 
was based on the hypothesis that statistical relationships between Q&Q 
of faecal sludge and "SPA-DET" data exist. The approach to collect DET 
data through questionnaires during sample collection was developed 
due the lack of available "SPA-DET" data in low- and middle-income 
countries. Software tools were then used in an iterative process, in this 
case to predict TS and emptying frequency in both Hanoi, Vietnam and 
Kampala, Uganda. This approach was taken, as a modelling based 
approach could potentially reduce required costs by improving the ef-
ficiency or potential of collected data, while increasing the accuracy of 
predictions for the design and implementation of management and 
treatment solutions. In this work, the word “model” is used to refer to 
mathematical models. 

2. Methods 

2.1. Hanoi: sample collection and laboratory analysis 

General city information for Hanoi together with detailed back-
ground information on the sanitation status can be found in the SFD 
report that is available for free online at https://sfd.susana.org/ 
(Brandes et al., 2016). 70 faecal sludge samples from onsite contain-
ments were collected from September 2013 to May 2014 throughout 
urban districts of Hanoi, 60 from households and 10 from public toilets. 
Households were defined as single-family households with less than 10 
inhabitants, and had septic tanks receiving only black-water. Samples 
were collected from collection and transport vacuum trucks immedi-
ately following desludging of the septic tank contents. A core sampling 
device (tube) was used to take a representative sample from the access 
port located on the top of the truck tank. The public toilets also had 
septic tanks, and composite samples were taken during discharge at a 
treatment plant (beginning, middle and end of discharge in 1:2:1 ratio as 
described in Gold et al. (2017). The different sampling methods (i.e. in 
situ or ex situ) were necessary due to a lack of legal discharge locations 
for emptying trucks making sample collection difficult. The effect of 
sampling location was evaluated, and determined to be representative 
(Ferr�e, 2014). Sample collection of the 60 households also included a 
questionnaire to collect information on the number of household in-
habitants, septic tank age and volume, faecal sludge age (defined as the 
time since the last emptying), use of additives, number of trucks 
required to empty the septic tank and whether the tank was partially or 
fully emptied. 

According to QA/QC procedures, duplicate samples were taken for 
every tenth sample, and duplicate laboratory analyses were made for 
every eighth measurement for all laboratory analyses. A maximum 
relative error of 15% was observed. Only 2% of samples (n ¼ 3) had a 
relative error between 10 and 15%, the remaining samples error was less 
than 10%. Samples were analysed with Standard Methods based on 
APHA (2012), including temperature (T), pH and electrical conductivity 
(EC) at the sampling site with probes (Hanna HI 99300, 99121 and 
8424). TS, volatile solids (VS), total suspended solids (TSS), volatile 
suspended solids (VSS), chemical oxygen demand (COD), total nitrogen 
(TN), total phosphorus (TP), ammonium nitrogen (N–NH4

þ-N), ortho-
phosphate phosphorus (PO4

3--P). Hach test kits and a Hach-Lange 
DR2800 spectrophotometer were used following manufacturers’ di-
rections. Samples for P–PO4

3--P and NH4
þ-N were additionally centrifuged 

(3820�g, for 10 min at room temperature) and filtered at 1.5 μm 
porosity (Whatman, 1827-110 Grade 934-AH) to address the high den-
sity and turbidity of the samples. Similar filters were used for TSS and 
VSS analyses. Finer porosity (e.g. 0.45 μm) could not be used due to 
clogging, but samples analysed with both filters were not significantly 
different. Nickel (Ni), lead (Pb), iron (Fe) and zinc (Zn) were analysed 
using inductively coupled plasma (ICP) based on the standard method 
3120 metals by plasma emission spectroscopy #85 (APHA, 2012), 
assuming faecal sludge density of 1. Salmonella and E. coli were ana-
lysed in external laboratories based on local standard methods (TCVN 
4884:2005, TCVN 6187-2:1996) based on APHA standard methods 
(APHA, 2012) at the laboratory of Institute of Environmental Technol-
ogy, Vietnam academy of science and technology. Ascaris lumbricoides 
eggs were analysed by the National Institute of Malariology, Parasi-
tology and Entomology of Vietnam. 

2.2. Kampala: sample collection and laboratory analysis 

General city information for Kampala together with detailed back-
ground information on the sanitation status can be found in the SFD 
report that is available for free online at https://sfd.susana.org/ 
(Schoebitz et al., 2016). 180 faecal sludge samples were collected in 
Kampala during 2013 to 2014, as previously described in Strande et al. 
(2018) (the full data set can be accessed open source at DOI: https://doi. 
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org/10.25678/0000TT. 

2.3. Variable presentation and cleaning of analysed data 

The data was considered to be comparable, as it was collected in both 
cities at the time of emptying operations when onsite containments were 
full. There were some differences in data collection methods that were 
deemed acceptable. In Hanoi the volume of emptied sludge was esti-
mated by the number of trucks required to empty the containment, and 
whether the tank was partially or fully emptied as in Hanoi it is common 
that trucks make multiple trips to the same household. Whereas in 
Kampala it was estimated by containment volume, percent emptied, 
truck volume, and whether the truck was full, as it is more common in 
Kampala that a truck empties one containment in a trip, and the truck is 
full after emptying. If the estimated containment volume and the truck 
volume differed, it was always assumed that truck volume was more 
accurate. In Hanoi, sludge age was estimated at containment age, as for 
all samples except for seven, it was the first time that the containment 
was being emptied. Whereas in Kampala, it was estimated as time since 
last emptied. Income level data was available for Kampala (Strande 
et al., 2018), but not for Hanoi. 

Variables that were considered as useful inputs for modelling com-
plied with the following criteria:  

1. The fraction of missing values in the whole data set is lower than 0.1  
2. The variance of the variable is larger than 0.001 (ignore constant 

variables) 

All remaining missing values were dropped. 
After this screening, an exploratory analysis was performed (Kidwell, 

1989; Tukey, 1980) aimed at identifying relevant variables from the 
initial data set. In this study, modelling results of TS and emptying fre-
quency as a function of "SPA-DET" variables are reported, hence the a 
priori selection of variables was guided by prior understanding about 
these dependencies. With these, a model structure was proposed (see 
sec. 2.4) and small random subsets of all variables complying with the 
criteria given above were fed into these models. Variables that were 
rarely selected by these models where further ignored. 

Table 1 shows the subset of variables that were deemed relevant (see 
data sets and doi https://doi.org/10.25678/0000TT for full set of vari-
ables). Input variables were normalized with their mean absolute de-
viation from the median, to not bias the exploratory analysis with units. 

Additionally, an independence analysis was done to determine if the 
data could be separated by categories (resembling a decision tree 
(Safavian and Landgrebe, 1991)), which lead to two groups (pit latrine 
and septic tank) being modelled independently (see supplementary in-
formation for details). 

2.4. Modelling scenarios 

In the absence of a prior causal model, any of the variables present in 
the collected data could be used as output. TS and emptying frequency 
were selected as output variables (to be predicted by models here) due to 
their relevance for faecal sludge management and faecal sludge tech-
nology design. TS is one of the most common variables for designing 
faecal sludge treatment technologies (e.g. solids loading rates for drying 
beds (kg TS/m2.yr)), and emptying frequency is important to prevent 
overflowing containments or to predict quantities arriving at treatment. 

To define the structure of the models, two scenarios were concep-
tually described for TS and emptying frequency, respectively. These 
scenarios allowed us to select a reasonable set of input variables and to 
specify relevant prior information and beliefs about them. In scenario 1 
(TS) a general model with no specific grounding in theory or field 
knowledge is used, whilst in scenario 2 (emptying frequency) a con-
ceptual model of how containments fill up, grounded in mass balances is 
used. With this at hand, the data measured is regressed using Gaussian 
Processes (Rasmussen and Williams, 2006). The processing and regres-
sion of the data were carried out using GNU Octave (Eaton et al., 2015) 
and the GPML package (Rasmussen and Nickisch, 2010), respectively 
(note, the GPML package is available for GNU Octave at https://gitlab. 
com/hnickisch/gpml-matlab/-/releases. The source code to reproduce 
the results in this article can be found at https://doi.org/10.256 
78/0000TT). All models presented herein can be readily reused in 
new contexts (new data sets) by directly editing the provided scripts. 
The failure or success of the model will provide the sector with new 
insights on processes of faecal sludge generation in the field. See sup-
plementary material for a detailed discussion. 

Due to the high local variability of Q&Q of faecal sludge it was hy-
pothesized that city-specific approaches are necessary. Hence the 
models presented herein were independently trained for each city and 
scenario, i.e. each model is trained from “scratch” or “tabula rasa” using 
the corresponding data set. For the city of Kampala the data was grouped 
based on the sanitation technology: septic tanks and pit latrines. A 
model was also calibrated for households with data from both cities (i.e. 
to explore the possibility of cross-city models for households). 

The general structure of all the models is: 

y¼meanfunctionðV!Þþ correctionfunctionðV!Þ þ noise (1) 

The model in Eq. (1) consists of two functions (mean and correction) 
and a noise term. The mean function depends on the variables in Table 1, 
and provides the baseline output of the model. This function is used 
herein to encode prior knowledge about the link between input variables 
and the output. The correction function is added to the mean in order to 
improve the prediction of the mean function. The correction function is 
nonlinear and decays rapidly when the inputs are far away from the 
training data (extrapolation). Hence the correction is present only in the 
region of the training data, and extrapolation is dominated by the mean 
function. The correction function is built from a covariance function (i.e. 
a function that controls the behaviour of the deviations away from the 
mean). The remaining data that cannot be explained by the two func-
tions is ascribed to a noise term. Formal details can be found in Ras-
mussen and Williams (2006) and in the supplementary information. 

2.5. Scenario 1: Total Solids (TS) 

The model used for the Hanoi data set (42 out of 60 data points from 
household septic tanks) is composed of a linear mean function on the 
variables number of users, containment volume, and sludge age. The 
correction function is generated by a Mat�ern covariance function (with 
automatic relevance determination) on the variables: number of users, 
sludge age, and sludge volume emptied. Finally, the model assumes that 
the data is corrupted by normally distributed noise. 

The model for the Kampala data set (180 data points with a wide 

Table 1 
Selected a priori potential SPA-DET variables from Hanoi and Kampala data sets.  

Input variables ID in supporting information 

Origin categorya,b OrCat 
Containment typea,b CoTyp 
Sludge age as time since last emptieda,b SludgeAge 
Sludge volume emptieda,b Vpumped 
Truck volumea,b TrVol 
Number of usersa,b NUsers 
Containment volumea,b CoVol 
Containment agea,b CoAge 
Water volume added during desludginga WaterV 
Income levelb IC  

a Data collected in Hanoi. 
b Data collected in Kampala. 
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range of sludge origins) has the same structure except that the mean and 
covariance functions use the input variables, number of users, contain-
ment volume, time since last emptied, and income level. The model is 
trained separately to data corresponding to pit latrines and septic tanks. 

2.6. Scenario 2: emptying frequency 

The emptying frequency scenario is based on the assumption that a 
customer (e.g. household, public toilet, industry) calls an emptier when 
the volume of their containment reaches a threshold volume. This vol-
ume is determined by the inflow to the containment, which is propor-
tional to the number of users per containment, and types of waste 
streams entering the containment, and also physical, chemical, and 
biological processes in the containment (Strande et al., (in preparation)). 
The proposed mean function for this model only accounts for physical 
processes on the containment, i. e. emptying frequencies are given by 
the ratio between storage capacity and the number of users: 

Emptyingfrequency¼
Numberofusersa

Containmentvolumeb (2)  

where the exponents a and b are left in the ratio as free parameters of the 
mean function. This model defines a multiplicative relation between the 
input variables and hence is not linear. However, this type of model is 

linear in a log-log scale, which was used as the natural scale for all 
variables. The logarithmic scale provides two benefits: 1) the model 
structure becomes linear in this scale; and 2) it helps to visualize the 
large variability of the data, which covers three orders of magnitude. 
Variability of this order of magnitude is representative of what is 
observed in literature (Gold et al., 2017; Strande et al., 2014). 

Taking logarithms on both sides of Equation (2) renders a linear 
model in the logarithm of the variables. The logarithm of equation (2) is 
then used as the mean function of a Gaussian process and extended with 
a covariance function that depends on other variables present in the data 
set. This model is shown in Equation (3): 

y¼w1X1þw2X2þw3þ f ðβ1X1;…; βnXnÞ þ ξ (3)  

where y is the logarithm of the emptying frequency (or minus the log-
arithm of the emptying period), and Xi (i ¼ 1, …,n) is the centered and 
normalized logarithm of the variables (1) in Hanoi: number of users, 
containment volume, truck volume, water volume added during 
desludging, and volume emptied, respectively (2) in Kampala: number 
of users, containment volume, containment age, truck volume, and in-
come level, respectively. When y is plotted versus X1 (number of users) 
or X2 (containment volume), the parameters w1, w2, and w3 are the slope 
and the intercept of a straight line. The relevance of each variable in the 
correction function is given by the value of the βn coefficients. Finally, ξ 

Fig. 1. Characterization results for 60 samples taken from household septic tanks in Hanoi, Vietnam.  
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models independent t-distributed noise, with zero mean value. Since the 
mean function was derived from mechanistic principles, the correction 
function was constrained: its maximum value is limited to a fraction of 
that of the mean function (for more details refer to supplemental 
information). 

The emptying frequency was not directly measured during the 
sampling and is not part of the data set, hence the inverse of the time 
between emptying events (‘time since last emptied’) was used as a proxy 
for the emptying frequency. 

3. Results 

3.1. Quantities and qualities: Hanoi, Vietnam 

The results of the characterization of samples collected in Hanoi is 
presented in Fig. 1. Despite consistent use of sampling methods and 
rigorous QA/QC during sample collection and analysis, the observed 
standard deviations for the characterization data were greater than 50% 
of the mean for all the parameters, except for pH, EC and P-PO4

3-. The 
complete results of the characterization and questionnaire based data 
collected for this study are now available open source (DOI: https://doi. 
org/10.25678/0000TT. 

The median concentrations of TS, VS, TSS, VSS, COD and TP were 
higher for the Hanoi faecal sludge than for the Kampala faecal sludge. 
However, the faecal sludge from Kampala had a greater variation, which 
could be due to the greater range of faecal sludge origins (i.e. not only 
septic tanks, not only households). The variations were significantly 
different between Hanoi and Kampala for CODsoluble, TN, NH4–N and P- 
PO4

3-. In Hanoi, rates of accumulation were calculated as described in 
Strande et al. (2018), and were also highly variable. The mean value was 
67 L/cap.yr, the standard deviation was 102 L/cap.yr and the median 
32 L/cap.yr. 

3.2. Scenario 1: total solids (TS) 

The TS concentrations were modelled separately for the two cities, 
and for septic tanks and pit latrines (Kampala). 

3.2.1. Hanoi septic tanks 
In Hanoi, the model predicts that TS increases with decreasing 

numbers of users, decreasing containment volumes, and increasing 
sludge age (further details in supplemental information). The correction 
function indicates the number of users and the sludge age as most sig-
nificant to improve the model performance, as presented in Fig. 2. The 
model performance when plotting the predicted TS values against the 
trained model is presented in Fig. 3 (numerical values of parameters are 
given in supplemental information). 

3.2.2. Kampala pit latrines 
In Kampala, the model predicts that in pit latrines TS increases with 

an increasing number of users, decreasing containment volume, 
increasing time since last emptied, and increasing income level, as 
presented in Fig. 4. The correction function indicates that the number of 
users is the most significant variable to improve the model performance. 
The model performance for pit latrines and septic tanks in Kampala 
when the predicted values are plotted against the trained model is 
presented in Fig. 5 (numerical values of parameters are given in sup-
plemental information). 

3.2.3. Kampala septic tanks 
In Kampala, the model predicts that in septic tanks TS increases with 

decreasing numbers of users, decreasing containment volume, 
increasing time since last emptied, and decreasing income level, as 
presented in Fig. 4. However, the time since last emptied has the highest 
relevance. The correction function indicates that income level is the 
most significant for improving model performance, as presented in 
Fig. 5. The prediction input variables could imply the same conclusion as 

Fig. 2. Prediction of TS in Hanoi. Mean function parameters (top) in relative relevance (Number of users, Containment volume, Sludge age), negative values indicate 
that the model predicts lower TS concentrations and positive values higher TS concentrations. Correction function parameters (bottom) in relative relevance (Number 
of users, Sludge age, Sludge volume emptied). 
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was found in Berendes et al. (2017), namely that the level of income is 
strongly correlated to TS in the containment since the correction func-
tion indicates that the level of income is highly relevant to the model’s 
performance. The relevance of income level for TS concentrations was 
also observed in Strande et al. (2018). With the modelling approach 
developed here, this relation can be used to predict TS concentrations. In 
Hanoi, predictions can also be made by other types of "SPA-DET" data (e. 
g. number of users, containment volume and sludge age). 

3.3. Scenario 2: emptying frequency 

Emptying frequency was also modelled separately for the two cities, 
and for septic tanks and pit latrines (Kampala). 

3.3.1. Hanoi septic tanks 
In Hanoi, the model predicts that emptying frequency in septic tanks 

increases with a decreasing number of users and increasing containment 
volumes, as presented in Fig. 6. The correction function indicates that 
containment volume is the most significant for improving the model’s 
performance. The predicted emptying frequency in Hanoi against the 
trained model is presented in Fig. 7 (numerical values of parameters are 
given in supplemental information). 

3.3.2. Kampala pit latrines 
In Kampala, the model predicts that emptying frequency in pit la-

trines increases with an increasing number of users and increasing 
containment volumes, as presented in Fig. 8. The correction function 
indicates that truck volume is the most significant for improving the 
model’s performance. The predicted emptying frequency in Kampala 
against the trained model for pit latrines and septic tanks is presented in 
Fig. 9 (numerical values presented in supplemental information). 

3.3.3. Kampala septic tanks 
In Kampala, the model predicts that emptying frequency in septic 

tanks increases with an increasing number of users and decreasing 
containment volumes as presented in Fig. 8. The correction function 
indicates that the income level is the most significant for improving the 
model’s performance (numerical values of parameters are given in 
supplemental information). 

The residual variability after regressing the model cannot be 

explained by the selected variables and is ascribed to noise (ξ) (equation 
(3)). In Kampala, pit latrines have higher noise, and are slightly less 
correlated with the data, than septic tanks, suggesting that the model is 
more robust for septic tanks. 

3.3.4. Emptying frequency for both Hanoi and Kampala septic tanks 
It was also evaluated if one predictive model could be built with data 

collected in both of the cities. This type of approach could be useful to 
investigate globally relevant factors for the prediction of Q&Q of faecal 
sludge. The emptying frequency of septic tanks with the model variables 
“number of users” and “containment volume” for Hanoi and Kampala 
are presented in a logarithm scale in Fig. 10, and the mean function 
parameters are presented in Fig. 11 (numerical values of parameters are 
given in supplemental information). 

4. Discussion 

4.1. Correction function 

In Hanoi and Kampala, number of users, containment volume, truck 
volume and income level were the most frequently occurring parameters 
selected by the correction function for all of the above examples. 
Although the automatic relevance determination was not robust and 
sensitive to the choice of parameter ranges and priors, it is valuable to 
consider how to improve data collection (accuracy) for variables that 
have a strong influence. By identifying parameters that will improve the 
model performance, the quality of future data collection can be targeted 
and improved to increase the accuracy. For example, collecting data on 
how many times the containment is used, and how it is used (e.g. uri-
nation, or defecation and urination) over time, as opposed to total 
number of users (e.g. household members, or number of students in a 
school). These estimates are difficult to make only through question-
naires, and could be improved with tools such as automatic counters on 
doors (Brdjanovic et al., 2015; Zakaria et al., 2018). Usage patterns in 
public toilets, institutions, and commercial enterprises will be different 
than households, with higher number of users per system, but an 
increased frequency of urination versus defecation (Nguyen Viet et al., 
2011). Other confounding factors include when students do not use 
sanitation facilities in school due to odour and uncleanliness (Xuan 
et al., 2012). Confounding factors also cannot be ruled out as to the 
relevance of truck volume as a relevant variable for correction, although 
a potential mechanistic link between truck volume and emptying fre-
quency can be postulated. However, both Schoebitz et al. (2017) and 
Strande et al. (2018) identified that Q&Q of faecal sludge vary signifi-
cantly amongst income levels. Income level is not the direct cause of 
Q&Q, but can be a predictor based on factors such as high-income areas 
having improved household water connections, better constructed 
containment, adequate resources for emptying services, and fewer users 
per toilet, all of which influence the volumes and characteristics of 
faecal sludge entering and exiting the containment, and hence emptying 
frequency. Other confounding factors can be poorer households only 
being able to afford partial emptying of containment, which would be 
reflected in the data as greater emptying frequency. 

4.2. City specific models 

The exploratory analysis of the TS input data for Kampala confirmed 
the benefit of building independent models according to containment 
type (i.e. pit latrine, septic tank), as was expected due to factors such as 
different usage patterns, flush volumes, containment lining, emptying 
practices and retention times (Fanyin-Martin et al., 2017; Strande et al., 
2014). The observed differences based on containment type, also illus-
trate the importance of making estimates for citywide faecal sludge 
characteristics, by building up weighted averages based on observed 
differences in categories of collected data (SPA-DET), as opposed to 
applying universal averages across multiple types of containment 

Fig. 3. TS Hanoi model vs. data. The plot illustrates the predicted TS against 
the trained model, using data from household septic tanks in Hanoi. Points on 
the diagonal line indicate perfect recovery of the training data. The correlation 
coefficient between predicted and observed values is shown in the legend. 
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Fig. 4. Prediction of TS in Kampala. Mean 
function parameters (top and 2nd from bot-
tom) in relative relevance (Pit latrine and 
Septic tank: Number of users, Containment 
volume, Time since last emptied, Income 
level), negative values represent a decreased 
TS, and positive values an increased TS. 
Correction function parameters (2nd from 
top and bottom) in relative relevance (Pit 
latrine: Number of users, Time since last 
emptied, Containment volume, Income level; 
Septic tank: Income level, Number of users, 
Time since last emptied, Containment 
volume).   
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Fig. 5. TS Kampala model vs. data. The plots illustrate the predicted TS against the trained model, using data from Kampala. Points on the diagonal line indicate 
perfect recovery of the training data. The correlation coefficient between predicted and observed values is shown in the legend. 

Fig. 6. Prediction of emptying frequency in Hanoi. Mean function parameters (top) in relative relevance (Number of users, Containment volume), negative values 
represent a decreased emptying frequency, and positive values an increased emptying frequency. Correction function parameters (bottom) in relative relevance 
(Containment volume, Water volume added during desludging, Truck volume, Sludge volume emptied, Number of users). 
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technologies. 
In Kampala, predictions of emptying frequency for septic tanks fit 

better than for pit latrines. Q&Q of sludge from pit latrines is likely to 
have more scattered data (Brouckaert et al., 2013) than septic tanks, due 
to increased factors that can affect variability. For example, highly 
variable and poorly constructed containment (Mosler and Sonego, 
2017), much higher numbers of users per containment volume (Günther 
et al., 2011; Isunju et al., 2013; Lugali et al., 2016), different decom-
position processes (Torondel et al., 2016), and greater inflow and 
infiltration (Nakagiri et al., 2015). However, sampling bias and con-
founders cannot be entirely ruled out, and would require more data 
collection for a complete causal analysis to evaluate the most significant 
predictors (Peters et al., 2017). This also illustrates the importance of 
understanding that observed statistical relations in a data set are not 
equivalent to an understanding of the fundamental mechanisms gener-
ating the data. 

In Kampala, the emptying frequency of pit latrines slightly increases 
with increasing containment volumes (Fig. 8), which seems counter- 
intuitive, especially when considering the assumptions that lead to the 
structure of the mean function (sec. 2.6). This could indicate that pit 
latrines in low-income areas have a much greater number of users, as 
they are commonly being used as communal or public toilets, with 
multiple households using the same pit latrine. In other words, because 
the number of users increases considerably faster than the containment 
volume, the emptying frequency increases with containment volume. 
However, although the containment volume available per user goes to 
zero for increasing number of users (plots in supplementary informa-
tion), the same is observed for septic tanks, where the model is in 
agreement with the assumptions leading to the mean function (Fig. 8). 
Moreover, the small value of the coefficient (for both containment types) 
indicates that the emptying frequency is not very sensitive to the 
containment volume, and would require more data to determine its true 
value. Results could be improved with a targeted data collection, or even 
a study were variables were actively controlled for (e.g. all containments 
of the same volume). The latter would be very useful to eliminate po-
tential confounders of this relation. These results in Kampala are in 
contrast to Hanoi, where decreasing number of users increase the 
emptying frequency. This has also been observed in South Africa 
(Buckley et al., 2008; Foxon et al., 2011; Still et al., 2005), possibly due 
to a lower average number of users per latrine with higher water 

consumption and income level. 

4.3. Cross-city model 

For emptying frequency of households (i.e. septic tanks, not 
including pit latrines), the data appears to be consistent across the two 
cities, despite the fact that the range of input variables is quite different 
for each city (Fig. 10). This implies that a single model could work for 
both cities, or that a model that fits in one city could reasonably be 
extrapolated to the other. This was not expected prior to data analysis, 
due to the large differences between the two cities. This result could be 
promising for the future development of cross-city or cross-country 
model development. However, it is important to note that two cities 
represent only two data points, and general assumptions for all cities 
cannot be made from this predictive model, which would require vali-
dation. Predictive data-driven models (or “black box” models) are based 
on associations, whereas in mechanistic models causal linkages of how 
input and output variables are related are known and described by a 
mathematical relation (more analogous to a “transparent box”) (James 
et al., 2013). Although the same correlation for different cities can be 
evidence of an underlying mechanistic connection (e.g. microbial or 
physical relation), it cannot be assumed without testing. It is important 
that statistical correlations in one city are not simply extrapolated to 
another city unless the mechanism entailing the correlation is identified 
(see chapter 2.1 in Peters et al. (2017) for a discussion). 

4.4. Implications 

These results demonstrate that building city-specific predictive 
models for TS and emptying frequency for pit latrines and septic tanks in 
Hanoi and Kampala based on collected data is possible. Types of "SPA- 
DET" data such as income level, number of users, containment type, and 
containment volume can be used to predict TS concentrations and 
emptying frequency. In many low- and middle-income countries, there 
is a lack of available demographic, environmental and technical data, 
but it can be obtained with questionnaire data during sample collection. 
Another possibility is generating "SPA-DET" data with remote sensing 
data to identify indicators for informal or formal, income-level, resi-
dential or commercial areas of cities (Kohli, 2015). 

The data can then be used in predictive models to aid with man-
agement and planning decisions. This was previously not possible, 
mainly due to a general lack of available data on citywide Q&Q of faecal 
sludge. The accuracy of models is directly dependent on the quality of 
collected data, illustrating the importance of developing standard 
methods of faecal sludge analysis and data collection, together with 
prior or expert knowledge used in developing models. This also illus-
trates the importance of moving beyond reporting average values for 
Q&Q of faecal sludge, which do not provide information such as dis-
tributions, ranges, and minimum and maximum values, and sharing raw 
data openly. In the future, this will make further and deeper exploratory 
analysis possible, which will lead to a better understanding of trends and 
predictors, which can also lead to better mechanistic understandings. 
Models will continue to be improved as more data becomes available, 
and can be used to more effectively target data collection in an iterative 
approach, where results inform future data collection, and model 
validation. 

As well established as modelling for the influent of wastewater 
treatment plants is, mechanistic models of incoming Q&Q are still 
considered quite challenging (Martin and Vanrolleghem, 2014). In 
comparison, the modelling of faecal sludge is in its infancy, with much 
less available knowledge, and much higher variability of Q&Q 
(Chowdhry and Kon�e, 2012; Koottatep et al., 2012), meaning there are 
still quite some challenges to face. Nevertheless, faecal sludge modelling 
is starting to develop in collaborations between in-field practitioners and 
experts in empirical modelling, which facilitates the process of building 
model structures that can predict output variables, while keeping in 

Fig. 7. Emptying frequency in Hanoi model vs. data. The predicted emptying 
frequency against the trained model, using Hanoi data. Points on the diagonal 
line indicate perfect recovery of the training data. The correlation coefficient 
between predicted and observed values is shown in the legend. 
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mind compounding factors such as illegal dumping, corruption, poor 
infrastructure and financial flows. 

5. Conclusions 

The results of the characterization confirm the high intrinsic vari-
ability of faecal sludge characteristics, and the fact that many factors 

influence the content of faecal sludge, independently from bias due to 
characterization methods. This is why it is important to not only report 
simple citywide average values for Q&Q of faecal sludge, and to break 
them down by for example containment type, and other types of cate-
gories of demographic, environmental and technical data. The results 
also indicate that when developing predictive models for faecal sludge 
management, independent models should be built according to 

Fig. 8. Prediction of emptying frequency in Kampala. 
Mean function parameters (top and 2nd from bottom) 
in relative relevance (Pit latrine and Septic tank: 
Number of users, Containment volume), negative 
values represent a decreased emptying frequency and 
positive values an increased emptying frequency. 
Correction function parameters (2nd from top and 
bottom) in relative relevance (Pit latrine: Truck vol-
ume, Income level, Containment age, Number of 
users, Containment volume; Septic tank: Income 
level, Number of users, Containment volume, 
Containment age, Truck volume).   
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Fig. 9. Emptying frequency in Kampala model vs. data. The predicted emptying frequency for pit latrines and septic tanks against the trained model, using Kampala 
data. Points on the diagonal line indicate perfect recovery of the training data. The correlation coefficient between predicted and observed values is shown in 
the legend. 

Fig. 10. Emptying frequency from single and multiple households from Hanoi and Kampala. The plots are in log-log scale.  
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containment type. 
For the first time, citywide predictive models were developed for TS 

and emptying frequency of faecal sludge. These models were generated 
based on collected data. Hence, the results are applicable to other cities 
where collected data follows similar distributions, and they allow people 
to easily test them with their data. To transfer the model, first a visual 
inspection of the data (see box plots, Fig. 1) is needed to determine if the 
data is similar enough to fit the same equations. However, even if the 
new data is outside the range of this training data, the equations can be 
used as a starting place along with the provided scripts, allowing the 
model to be recalibrated. Mechanistic models can survive different 
scenarios because they are based on “facts” or relationships that are 
universal, but purely data-driven models can only hold up if the data in 
other regions is within the same range. 

As more data sets become available, it will be interesting and 
informative to learn to what level predictive models can be transferred 
among cities and regions. With more reliable methods to collect and 
analyse data, the actual dynamic Q&Q of faecal sludge can be more 
accurately predicted. By identifying consistent patterns or relationships 
for different types of management structures, management strategies 
can more rapidly be developed and improved. As more data is collected 
in this fashion, it can potentially be used to develop mechanistic re-
lationships that will help lead to universal understandings of faecal 
sludge management. This first step opens the door to explore models 
across multiple cities and countries in able to support practitioners in 
making informed decisions. 
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