
Exercise 1
Modelling Aquatic Ecosystems FS25

1

About exercises
• Check Program 2025 for course schedule

• Personal laptop is needed for all exercises

• Every exercise has some tasks, including
homework. (Submission is not required)

• Programming skills is not assessed.

• Solution will be uploaded after every
exercise class

2

https://www.eawag.ch/fileadmin/Domain1/Abteilungen/siam/lehre/modelling_aquatic_ecosystems/modaqecosys_progr_2025.pdf

Get helped

Chuxinyao Wang
Chuxinyao.wang@eawag.ch

Emma Chollet Ramampiandra
emma.chollet@eawag.ch

Andreas Scheidegger
andreas.scheidegger@eawag.ch

Ask your questions
in class or via emails!

3

mailto:Chuxinyao.wang@eawag.ch
mailto:emma.chollet@eawag.ch
mailto:andreas.scheidegger@eawag.ch

Introduction to exercise 1

• Instructions is given in html and pdf.
• R programming

• There are some useful links for R
tutorials you can find in exercise
instructions.

• A little useful AI tool: Copilot
encompasses in RStudio.

• Set up guidance
• Live demonstration

• You will manually copy the code to
an R-file and run it in the console.

4

https://docs.posit.co/ide/user/ide/guide/tools/copilot.html

Introduction to exercise 1
• A comparison between
 a) Direct implementation of the differential equation and
 b) Using the "ecosim" package to implement and solve the

differential equations.
definition of right-hand side of differential equations (11.8, 11.9):

rhs <- function(t,y,par)
{

 # equation (11.8):

 dC.HPO4_dt <- par$Q.in*86400/(par$h.epi*par$A) * (par$C.HPO4.in - y["C.HPO4"]) -
 par$alpha.P.ALG * par$k.gro.ALG * y["C.HPO4"] /
 (par$K.HPO4 + y["C.HPO4"]) * y["C.ALG"]

 # equation (11.9): TO BE COMPLETED

 dC.ALG_dt <- - par$Q.in*86400/(par$h.epi*...) * y["C.ALG"] +
 par$k.gro.ALG * y["C.HPO4"] / (par$K.HPO4 + y["C.HPO4"]) * ... -
 ... * y["C.ALG"]

 return(list(c(dC.HPO4_dt,dC.ALG_dt)))
}

• Write differential equations in
a function with time period,
state variables and defined
parameters.

5

Introduction to exercise 1

• A comparison between
• a) Direct implementation of the differential equation and
• b) Using the "ecosim" package to implement and solve the

differential equations.

solve differential equations:

res <- ode(y=c(C.HPO4=param$C.HPO4.ini,C.ALG=param$C.ALG.ini),
 times=seq(0,365,by=1),func=rhs,par=param)

• Use ‘ODE’ solver to compute
the equations

6

Introduction to exercise 1

• A comparison between
• a) Direct implementation of the differential equation and
• b) Using the ‘ecosim’ package to implement and solve the

differential equations.

• ‘ecosim’ is based on "object oriented programming". It uses different
classes to define processes, reactors, links and the whole system.

7

Introduction to exercise 1

definition of transformation processes

growth of algae:

gro.ALG <- new(Class = "process",
 name = "Growth of algae",
 rate = expression(k.gro.ALG
 *C.HPO4/(K.HPO4+C.HPO4)
 *C.ALG),
 stoich = list(C.ALG = expression(1), # gDM/gDM
 C.HPO4 = expression(-alpha.P.ALG))) # gP/gDM

death of algae:

death.ALG <- new(Class = "process",
 name = "Death of algae",
 rate = expression(k.death.ALG*C.ALG),
 stoich = list(C.ALG = expression(-1))) # gDM/gDM

• Class: process
• Used to define a transformation

process

8

Introduction to exercise 1

9

definition of transformation processes

growth of algae:

gro.ALG <- new(Class = "process",
 name = "Growth of algae",
 rate = expression(k.gro.ALG
 *C.HPO4/(K.HPO4+C.HPO4)
 *C.ALG),
 stoich = list(C.ALG = expression(1), # gDM/gDM
 C.HPO4 = expression(-alpha.P.ALG))) # gP/gDM

death of algae:

death.ALG <- new(Class = "process",
 name = "Death of algae",
 rate = expression(k.death.ALG*C.ALG),
 stoich = list(C.ALG = expression(-1))) # gDM/gDM

Introduction to exercise 1

definition of reactor to describe the epilimnion of the lake:

epilimnion <-
 new(Class = "reactor",
 name = "Epilimnion",
 volume.ini = expression(A*h.epi),
 conc.pervol.ini = list(C.HPO4 = expression(C.HPO4.ini), # gP/m3
 C.ALG = expression(C.ALG.ini)), # gDM/m3
 inflow = expression(Q.in*86400), # m3/d
 inflow.conc = list(C.HPO4 = expression(C.HPO4.in),
 C.ALG = 0),
 outflow = expression(Q.in*86400),
 processes = list(gro.ALG,death.ALG))# gDM/gDM

• Class: reactor
• Used to define a mixed reactor

10

Introduction to exercise 1

11

definition of reactor to describe the epilimnion of the lake:

epilimnion <-
 new(Class = "reactor",
 name = "Epilimnion",
 volume.ini = expression(A*h.epi),
 conc.pervol.ini = list(C.HPO4 = expression(C.HPO4.ini), # gP/m3
 C.ALG = expression(C.ALG.ini)), # gDM/m3
 inflow = expression(Q.in*86400), # m3/d
 inflow.conc = list(C.HPO4 = expression(C.HPO4.in),
 C.ALG = 0),
 outflow = expression(Q.in*86400),
 processes = list(gro.ALG,death.ALG))# gDM/gDM

Introduction to exercise 1

definition of the system consisting of a single reactor:

system.11.1.a <- new(Class = "system",
 name = "Lake",
 reactors = list(epilimnion),
 param = param,
 t.out = seq(0,365,by=1))

perform simulation:

res.11.1.a <- calcres(system.11.1.a)

• Class: system
• Used to define the model representing

the system to be analyzed

Calculate dynamic solutions for the system

12

Introduction to exercise 1

13

definition of the system consisting of a single reactor:

system.11.1.a <- new(Class = "system",
 name = "Lake",
 reactors = list(epilimnion),
 param = param,
 t.out = seq(0,365,by=1))

perform simulation:

res.11.1.a <- calcres(system.11.1.a)

Reactor properties
Stoichiometric coefficients
Process rates (growth & death of algae)

1

Introduction to exercise 1

All these classes comprise to the system we
want to model.

14

Now, it’s your turn to start the exercise!

We get back 15 minutes before 12pm for the answers.

Feel free to ask questions.

15

Task 2

ODE result (1 year)

16

Task 3

ecosim result (1 year)

18

Task 4

Periodic conditions
(4 years)

20

Task 4

Constant and periodic
conditions
(4 years)

21

Homework: Task 5

• Using the function ‘calcsens()’ to perform sensitivity analysis.

• Sensitivity analysis supports our understanding of the importance of
parameters on model results.

• Useful information: Table 16.4 in Manuscript

23

https://www.eawag.ch/fileadmin/Domain1/Abteilungen/siam/lehre/modelling_aquatic_ecosystems/modaqecosys.pdf

Thanks for participating, see you next week!

Have a great day!

24

	Exercise 1
	About exercises
	Get helped
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Introduction to exercise 1
	Slide Number 15
	Task 2
	Task 3
	Task 4
	Task 4
	Homework: Task 5
	Slide Number 24

