
Exercise 1
Modelling Aquatic Ecosystems FS25
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About exercises
• Check Program 2025 for course schedule

• Personal laptop is needed for all exercises

• Every exercise has some tasks, including 
homework. (Submission is not required)

• Programming skills is not assessed.

• Solution will be uploaded after every 
exercise class
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https://www.eawag.ch/fileadmin/Domain1/Abteilungen/siam/lehre/modelling_aquatic_ecosystems/modaqecosys_progr_2025.pdf


Get helped

Chuxinyao Wang 
Chuxinyao.wang@eawag.ch 

Emma Chollet Ramampiandra 
emma.chollet@eawag.ch 

Andreas Scheidegger 
andreas.scheidegger@eawag.ch 

Ask your questions 
in class or via emails!
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Introduction to exercise 1

• Instructions is given in html and pdf.
• R programming

• There are some useful links for R 
tutorials you can find in exercise 
instructions.

• A little useful AI tool: Copilot 
encompasses in RStudio.

• Set up guidance 
• Live demonstration

• You will manually copy the code to 
an R-file and run it in the console.
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https://docs.posit.co/ide/user/ide/guide/tools/copilot.html


Introduction to exercise 1
• A comparison between 
 a) Direct implementation of the differential equation and 
 b) Using the "ecosim" package to implement and solve the 

differential equations.
# definition of right-hand side of differential equations (11.8, 11.9):

rhs <- function(t,y,par)
{

  # equation (11.8):
  
  dC.HPO4_dt <-   par$Q.in*86400/(par$h.epi*par$A) * (par$C.HPO4.in - y["C.HPO4"]) - 
                  par$alpha.P.ALG * par$k.gro.ALG * y["C.HPO4"] / 
    (par$K.HPO4 + y["C.HPO4"]) * y["C.ALG"]
  
  # equation (11.9): TO BE COMPLETED
    
  dC.ALG_dt  <-  - par$Q.in*86400/(par$h.epi*...) * y["C.ALG"] + 
                   par$k.gro.ALG * y["C.HPO4"] / (par$K.HPO4 + y["C.HPO4"]) * ... - 
                   ... * y["C.ALG"]
  
  return(list(c(dC.HPO4_dt,dC.ALG_dt)))
}

• Write differential equations in 
a function with time period, 
state variables and defined 
parameters.
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Introduction to exercise 1

• A comparison between 
•  a) Direct implementation of the differential equation and 
•  b) Using the "ecosim" package to implement and solve the 

differential equations.

# solve differential equations:
        
res <- ode(y=c(C.HPO4=param$C.HPO4.ini,C.ALG=param$C.ALG.ini),
           times=seq(0,365,by=1),func=rhs,par=param)

• Use ‘ODE’ solver to compute 
the equations
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Introduction to exercise 1

• A comparison between 
•  a) Direct implementation of the differential equation and 
•  b) Using the ‘ecosim’ package to implement and solve the 

differential equations.

• ‘ecosim’ is based on "object oriented programming". It uses different 
classes to define processes, reactors, links and the whole system.

7



Introduction to exercise 1

# definition of transformation processes

# growth of algae:

gro.ALG   <- new(Class  = "process",
                 name   = "Growth of algae",
                 rate   = expression(k.gro.ALG
                                     *C.HPO4/(K.HPO4+C.HPO4)
                                     *C.ALG),
                 stoich = list(C.ALG  = expression(1),              # gDM/gDM
                               C.HPO4 = expression(-alpha.P.ALG)))  # gP/gDM

# death of algae:

death.ALG <- new(Class = "process",
                 name   = "Death of algae",
                 rate   = expression(k.death.ALG*C.ALG),            
                 stoich = list(C.ALG  = expression(-1)))            # gDM/gDM

• Class: process
• Used to define a transformation 

process
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Introduction to exercise 1
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Introduction to exercise 1

# definition of reactor to describe the epilimnion of the lake:

epilimnion <- 
   new(Class            = "reactor",
       name             = "Epilimnion",
       volume.ini       = expression(A*h.epi),
       conc.pervol.ini  = list(C.HPO4 = expression(C.HPO4.ini),     # gP/m3
                               C.ALG  = expression(C.ALG.ini)),     # gDM/m3
       inflow           = expression(Q.in*86400),                   # m3/d
       inflow.conc      = list(C.HPO4 = expression(C.HPO4.in),
                               C.ALG  = 0),
       outflow          = expression(Q.in*86400),
       processes        = list(gro.ALG,death.ALG))# gDM/gDM

• Class: reactor
• Used to define a mixed reactor
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Introduction to exercise 1
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Introduction to exercise 1

# definition of the system consisting of a single reactor:

system.11.1.a <- new(Class    = "system",
                     name     = "Lake",
                     reactors = list(epilimnion),
                     param    = param,
                     t.out    = seq(0,365,by=1))

# perform simulation:

res.11.1.a <- calcres(system.11.1.a)

• Class: system
• Used to define the model representing 

the system to be analyzed

Calculate dynamic solutions for the system
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Introduction to exercise 1
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# definition of the system consisting of a single reactor:

system.11.1.a <- new(Class    = "system",
                     name     = "Lake",
                     reactors = list(epilimnion),
                     param    = param,
                     t.out    = seq(0,365,by=1))

# perform simulation:

res.11.1.a <- calcres(system.11.1.a)

Reactor properties
Stoichiometric coefficients
Process rates (growth & death of algae)
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Introduction to exercise 1

All these classes comprise to the system we 
want to model.
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Now, it’s your turn to start the exercise!

We get back 15 minutes before 12pm for the answers.

Feel free to ask questions.
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Task 2

ODE result (1 year)
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Task 3

ecosim result (1 year)

18



Task 4

Periodic conditions
(4 years)
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Task 4

Constant and periodic 
conditions
(4 years)
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Homework: Task 5

• Using the function ‘calcsens()’ to perform sensitivity analysis.

•  Sensitivity analysis supports our understanding of the importance of 
parameters on model results.

• Useful information: Table 16.4 in Manuscript 
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https://www.eawag.ch/fileadmin/Domain1/Abteilungen/siam/lehre/modelling_aquatic_ecosystems/modaqecosys.pdf


Thanks for participating, see you next week!

Have a great day!
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