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ETH Zurich Course 701-0426-00L: Modelling Aquatic Ecosystems (Schuwirth)

February 28, 2024

Goals

• Review basic elements of R needed to handle the technical aspects of the exercises.
• Be able to implement the simple lake phytoplankton model described in section 11.1 of the manuscript.
• Understand the basic structure and functioning of the R package ‘ecosim’.
• Understand the behaviour of the solutions of this model.

Notes

1) All the exercises files can be downloaded from the course homepage http://www.eawag.ch/forschung/
siam/lehre/modaqecosys.

2) To conduct the exercises, install the newest version of R on your computer from http://rproject.org.
We recommend to use RStudio as an editor for R: http://rstudio.com. All the R Markdown exercise
files (ending with .Rmd) can then be opened and modified on RStudio. Finally, you can install the
required packages ecosim, stoichcalc and deSolve by executing the following commands.

# load required packages:

# to conduct the exercises:
if ( !require("ecosim") ) {install.packages("ecosim"); library("ecosim") }
if ( !require("stoichcalc") ) {install.packages("stoichcalc"); library("stoichcalc") }
if ( !require("deSolve") ) {install.packages("deSolve"); library("deSolve") }

# to work with the R Markdown format:
if ( !require("markdown") ) {install.packages("markdown"); library("markdown") }

Note that these commands install the required packages only if they are not yet installed. However, only
installing them explicitly with the function install.packages("...") guarantees that the newest version
is installed (because required packages are not re-installed if the are already installed).

Task 1: Introduction to R

Become familiar with R. See presentation and separate documentation.

Other useful resources can be found at http://r-project.org, in particular:

• http://cran.r-project.org/manuals.html
• https://cran.r-project.org/other-docs.html
• https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
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If you are new to R and want to quickly get used to the basics, a short (~30 minutes) optional tutorial can
be found at:

• https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

Task 2: Simple lake phytoplankton model with constant driving forces - Direct implementation
of the right hand side of the equation

Carefully study the implementation of the model described in section 11.1 given below for the case of
constant driving forces.

2.1 Define the system and its parameters We investigate the system by solving the corresponding
differential equations (11.8 and 11.9 in the manuscript) with the package deSolve. Fill in the missing
terms in the second equation (11.9). Hint: Follow the structure of equation 11.8 as shown below and
in the manuscript.

Pay attention to the different objects you add to your environment while you complete and run the following
chunks.

# Model with constant driving forces
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# definition of model parameters:

param <- list(k.gro.ALG = 0.5, # 1/d
k.death.ALG = 0.1, # 1/d
K.HPO4 = 0.002, # gP/m3
alpha.P.ALG = 0.003, # gP/gDM
A = 5e+006, # m2
h.epi = 5, # m
Q.in = 5, # m3/s
C.HPO4.in = 0.04, # gP/m3
C.HPO4.ini = 0.004, # gP/m3
C.ALG.ini = 0.1) # gDM/m3

# definition of right-hand side of differential equations (11.8, 11.9):

rhs <- function(t,y,par)
{

# equation (11.8):

dC.HPO4_dt <- par$Q.in*86400/(par$h.epi*par$A) * (par$C.HPO4.in - y["C.HPO4"]) -
par$alpha.P.ALG * par$k.gro.ALG * y["C.HPO4"] /

(par$K.HPO4 + y["C.HPO4"]) * y["C.ALG"]

# equation (11.9): TO BE COMPLETED

dC.ALG_dt <- - par$Q.in*86400/(par$h.epi*...) * y["C.ALG"] +
par$k.gro.ALG * y["C.HPO4"] / (par$K.HPO4 + y["C.HPO4"]) * ... -
... * y["C.ALG"]

return(list(c(dC.HPO4_dt,dC.ALG_dt)))
}
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2.2 Perform simulations We now study how to do simulations once a model has been defined and how
to plot the results with the function plot.

First we solve the differential equations for 1 year with the solver ode of the package deSolve.

# solve differential equations:

res <- ode(y=c(C.HPO4=param$C.HPO4.ini,C.ALG=param$C.ALG.ini),
times=seq(0,365,by=1),func=rhs,par=param)

Then, we plot the results.

# plot results:

par(mfrow=c(1,2))
plot(res[,"time"],res[,"C.HPO4"],type="l",xlab="t",ylab="C.HPO4",main="C.HPO4")
plot(res[,"time"],res[,"C.ALG"] ,type="l",xlab="t",ylab="C.ALG" ,main="C.ALG")

# plot results to a file:

file.name <- "exercise_1_results_a1_deSolve.pdf"
# open a pdf file to store the plots
pdf(file.name, paper = 'special', width = 10, height = 5, onefile = TRUE)

par(mfrow=c(1,2))
plot(res[,"time"],res[,"C.HPO4"],type="l",xlab="t",ylab="C.HPO4",main="C.HPO4")
plot(res[,"time"],res[,"C.ALG"] ,type="l",xlab="t",ylab="C.ALG" ,main="C.ALG")

dev.off() # close the pdf file

Finally, fill in the missing terms, calculate and plot the solution for 4 years.

# change simulation time to 4 years:

res.4y <- # TO BE COMPLETED

# plot results:

# TO BE COMPLETED

# plot results to a file:

Task 3: Simple lake phytoplankton model with constant driving forces - Implementation with
ecosim

Now, we investigate the same problem using the ecosim package.

3.0 Introduction to the package ecosim See presentation, documentation in section 16 of the
manuscript and the manual ecosim.pdf at http://cran.rproject.org/package=ecosim.
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3.1 Define the system We don’t need to define the parameters again, since it was done in Task 2.1.
Become familiar with the creation of objects of the classes process, reactor, and system and link their
entries to the system description provided in section 11.1. In particular, check the implementation of the
object of the class process with the process table notation introduced in the course.

We define the processes of growth and death of algae as objects of the class process of the package ecosim.
Each process is defined by its name, rate, and stoichiometry. The rate is defined as an expression that
can use parameters (defined for the object of class system below), concentrations defined in objects of class
reactor that are part of the object of class system. To define the stoichiometry a named list of expressions
must be provided that identifies the substance or organism concentrations as the names and contains the
stoichiometric coefficients as expressions.

# definition of transformation processes

# growth of algae:

gro.ALG <- new(Class = "process",
name = "Growth of algae",
rate = expression(k.gro.ALG

*C.HPO4/(K.HPO4+C.HPO4)
*C.ALG),

stoich = list(C.ALG = expression(1), # gDM/gDM
C.HPO4 = expression(-alpha.P.ALG))) # gP/gDM

# death of algae:

death.ALG <- new(Class = "process",
name = "Death of algae",
rate = expression(k.death.ALG*C.ALG),
stoich = list(C.ALG = expression(-1))) # gDM/gDM

Next, we define the mixed box describing the epliminion of the lake as an object of the class reactor of the
package ecosim.

# definition of reactor to describe the epilimnion of the lake:

epilimnion <-
new(Class = "reactor",

name = "Epilimnion",
volume.ini = expression(A*h.epi),
conc.pervol.ini = list(C.HPO4 = expression(C.HPO4.ini), # gP/m3

C.ALG = expression(C.ALG.ini)), # gDM/m3
inflow = expression(Q.in*86400), # m3/d
inflow.conc = list(C.HPO4 = expression(C.HPO4.in),

C.ALG = 0),
outflow = expression(Q.in*86400),
processes = list(gro.ALG,death.ALG))

Finally, we combine the reactor, the parameters, and the desired output times in an object of class system
of the package ecoval.

# definition of the system consisting of a single reactor:

system.11.1.a <- new(Class = "system",
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name = "Lake",
reactors = list(epilimnion),
param = param,
t.out = seq(0,365,by=1))

Note that this object contains all definitions of the configuration of reactors (in this case just a single one),
the processes active in each reactor, the model parameters, and the output time points. Any simulations
carried out will refer to the definitions in this object, and not to the external variables that we used to set
up the elements of the system.

3.2 Perform simulations In a second step, we run simulations of the model as an object of the class
system from the package ecosim. Perform simulations with the model and try different plotting options
based on the code below and on your own ideas. Interpret the results.

# perform simulation:

res.11.1.a <- calcres(system.11.1.a)

Be aware that the function calcres of the ecosim package also uses ode to calculate the solution of the
differential equations.

# plot results whit default options:

plotres(res.11.1.a)

# plot only results for the concentration of algae: TO BE COMPLETED

plotres(res=res.11.1.a,colnames=...)

# plot results for phosphate and algae: TO BE COMPLETED

plotres(res=res.11.1.a,colnames=list(...))

# plot results to a file:

plotres(res = res.11.1.a,
colnames = list("C.HPO4","C.ALG"),
file = "exercise_1_results_a1.pdf",
width = 10,
height = 5)

# change simulation time to 4 years:

system.11.1.a@t.out <- seq(0,4*365.25,by=1)

# calculate results for the system with modified simulation time:

res.11.1.a.4y <- # TO BE COMPLETED

# plot results:

5



# TO BE COMPLETED

# plot results to pdf:

# TO BE COMPLETED

3.3 Comparison of model implementation Now that you investigated the same system in two different
ways (by defining the right hand side directly in R and solving it with deSolve and by using the package
ecosim), what do you think are the advantages and disadvantages of each implementation? How might this
change when the model becomes more complex?

Task 4: Extend the model to periodic driving forces and do simulations

From now on we will only work with the package ecosim.

Study and run the extension of the model to periodic driving forces as documented below. Fill in the
missing terms, perform simulations, and plot and interpret the results.

# Model with seasonally varying driving forces
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# extend system definitions:

system.11.1.b <- system.11.1.a

# extend growth of algae by environmental factors:

gro.ALG.ext <-
new(Class = "process",

name = "Growth of algae extended",
rate = expression(k.gro.ALG

*exp(beta.ALG*(T-T0))
*C.HPO4/(K.HPO4+C.HPO4)
*log((K.I+I0)

/(K.I+I0*exp(-(lambda.1+lambda.2*C.ALG)*h.epi)))
/((lambda.1+lambda.2*C.ALG)*h.epi)

*C.ALG),
stoich = list(C.ALG = 1, # gDM/gDM

C.HPO4 = expression(-alpha.P.ALG))) # gP/gDM

# re-define processes in the reactor "epilimnion":

epilimnion@processes <- list(gro.ALG.ext,death.ALG)

# make environmental conditions (light and temperature) time dependent:

epilimnion@cond <- list(I0 = expression(0.5*(I0.min+I0.max)+
0.5*(I0.max-I0.min)*
cos(2*pi/365.25*(t-t.max))), # W/m2

T = expression(0.5*(T.min+T.max)+
0.5*(T.max-T.min)*
cos(2*pi/365.25*(t-t.max)))) # degC
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# re-define the reactor "epilimnion" in the system definition:

system.11.1.b@reactors <- list(epilimnion)

# extend model parameters:

param <- c(param,
list(beta.ALG = 0.046, # 1/degC

T0 = 20, # degC
K.I = 30, # W/m2
lambda.1 = 0.10, # 1/m
lambda.2 = 0.10, # m2/gDM
t.max = 230, # d
I0.min = 25, # W/m2
I0.max = 225, # W/m2
T.min = 5, # degC
T.max = 25)) # degC

# increase algal growth rate to compensate for new limitations:

param$k.gro.ALG <- 0.8

# replace parameters in the system definition:

system.11.1.b@param <- param

# redo simulations and plot results:

res.11.1.b <- # TO BE COMPLETED

plotres(...) # observe the time frame of this simulation

plotres(...) # plot only the first year of the simulation res.11.1.b

plotres(res = res.11.1.b, # plot to pdf file
colnames = list("C.HPO4","C.ALG"),
file = "exercise_1_results_b1.pdf",
width = 10,
height = 5)

# comparison of the two simulations:

plotres(res = list(const=res.11.1.a.4y,dyn=res.11.1.b),
colnames = list("C.HPO4","C.ALG"),
file = "exercise_1_results_ab.pdf",
width = 10,
height = 5)

Task 5 - Homework: Simple sensitivity analysis

A sensitivity analysis is an analysis of how sensitive the model results are to changes in the parameter values.
The simplest way of doing this is a so called “local sensitivity analysis”, where we change just one parameter
at a time and keep the other parameters fixed, run the model and plot and analyse the results.
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Do simulations with modified values of the parameters Cin,HP O2−
4

, kgro,ALG, kdeath,ALG, and KHP O2−
4 ,ALG

using the function calcsens(). Type ?calcsens to get the help file for this function and to see the default
values. By default each parameter given in the list of param.sens is increased by a factor of 2 and decreased
by a factor of 1/2. Try to understand the model responses to changes in the model input (Cin,HP O2−

4
) and

process parameters (kgro,ALG, kdeath,ALG, KHP O2−
4 ,ALG) under constant environmental conditions.

?calcsens # get help file for this function

# perform sensitivity analysis: TO BE COMPLETED

sens.res <- calcsens(..., ..., scaling.factors=...)

# plot the results

# TO BE COMPLETED

Theory questions

1. How can you derive the total (net) transformation rate of CHP O2−
4

and CALG from the process table
(Table 11.1) and the process rates (Table 11.2)? Hint: see equation (4.1) in the manuscript. What are
the units?

2. Look at the state variables CHP O2−
4

and CALG. Which of them is more sensitive to the parameter
KHP O2−

4 ,ALG and which of them is more sensitive to Cin,HP O2−
4

? Do you understand why?
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