Goals:

Task 1: Model with constant driving forces

Study the implementation of the model described in section 11.2 for constant driving forces. Run the model implementation below and interpret the behavior of the solutions.

# Model with constant driving forces
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# load required packages:
if ( !require("deSolve") ) {install.packages("deSolve"); library("deSolve") }
if ( !require("ecosim") ) {install.packages("ecosim"); library("ecosim") }

# definition of model parameters:
param    <- list(k.gro.ALG   = 0.5,      # 1/d
                 k.gro.ZOO   = 0.4,      # m3/gDM/d
                 k.death.ALG = 0.1,      # 1/d
                 k.death.ZOO = 0.05,     # 1/d
                 K.HPO4      = 0.002,    # gP/m3
                 Y.ZOO       = 0.2,      # gDM/gDM
                 alpha.P.ALG = 0.003,    # gP/gDM
                 A           = 5e+006,   # m2
                 h.epi       = 5,        # m
                 Q.in        = 5,        # m3/s
                 C.HPO4.in   = 0.04,     # gP/m3             
                 C.HPO4.ini  = 0.04,     # gP/m3
                 C.ALG.ini   = 0.1,      # gDM/m3
                 C.ZOO.ini   = 0.1)      # gDM/m3
  1. Complete and run the definitions of the transformation processes describing the growth and death of Algae and Zooplankton. Hint: look at what we did in Exercise 1.
# definition of transformation processes

# growth of algae:

gro.ALG   <- new(Class  = "process",
                 name   = "Growth of algae",
                 rate   = expression(k.gro.ALG
                                     *C.HPO4/(K.HPO4+C.HPO4)
                                     *C.ALG),
                 stoich = list(C.ALG  = expression(1),              # gDM/gDM
                               C.HPO4 = expression(-alpha.P.ALG)))  # gP/gDM

# death of algae: TO BE COMPLETED

death.ALG <- new(Class = ...,
                 name   = ...,
                 rate   = ...,
                 stoich = ...)            # gDM/gDM

# growth of zooplankton:

gro.ZOO   <- new(Class  = "process",
                 name   = "Growth of zooplankton",
                 rate   = expression(k.gro.ZOO
                                     *C.ALG
                                     *C.ZOO),
                 stoich = list(C.ZOO  = expression(1),              # gDM/gDM
                               C.ALG  = expression(-1/Y.ZOO)))      # gP/gDM

# death of zooplankton: TO BE COMPLETED

death.ZOO <- new(Class  = ...,
                 name   = ...,
                 rate   = ...,
                 stoich = ...)           # gDM/gDM
  1. Complete and run the definition of the epilimnion. Hint: look at what we did in Exercise 1.
# definition of reactor to describe the epilimnion of the lake: TO BE COMPLETED

epilimnion <- 
  new(Class            = ...,
      name             = ...,
      volume.ini       = ...,
      conc.pervol.ini  = list(C.HPO4 = ...,     # gP/m3
                              C.ALG  = ...,      # gDM/m3
                              C.ZOO  = ...),     # gDM/m3
      inflow           = ...,                   # m3/d
      inflow.conc      = list(C.HPO4 = expression(C.HPO4.in),
                              C.ALG  = 0,
                              C.ZOO  = 0),
      outflow          = ...,
      processes        = list(...))


# definition of the system consisting of a single reactor:

# observe the time frame of the simulation
system.11.2.a <- new(Class    = "system",
                     name     = "Lake",
                     reactors = list(epilimnion),
                     param    = param,
                     t.out    = seq(0,2*365,by=1)) 
  1. Perform and plot the simulation of the system. Interpret the results.
# perform simulation:

res.11.2.a <- calcres(system.11.2.a)

# plot results with default options:

plotres(res.11.2.a)

# variables in a vector 'c()' are plotted in the same graph

plotres(res=res.11.2.a,colnames=c("C.ALG", "C.HPO4","C.ZOO"))

# variables in a list 'list()' are plotted in different graphs

plotres(res=res.11.2.a,colnames=list("C.ALG", "C.HPO4", "C.ZOO"))

# combination of the two

plotres(res=res.11.2.a,colnames=list("C.HPO4",c("C.ALG", "C.ZOO")))

# plot and save as pdf

plotres(res      = res.11.2.a,
        colnames = list("C.HPO4",c("C.ALG", "C.ZOO")),
        file     = "exercise_2_results_a.pdf",
        width    = 10,
        height   = 5)

Task 2: Model with seasonally varying driving forces

Study the implementation of the model extension to seasonally varying driving forces. First, run the model implementation below.

# Model with seasonally varying driving forces
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# copy the previous system definition:

system.11.2.b <- system.11.2.a

# extend model parameters:

param  <- c(param,
            list(beta.ALG    = 0.046,    # 1/degC
                 beta.ZOO    = 0.08,     # 1/degC
                 T0          = 20,       # degC
                 K.I         = 30,       # W/m2
                 lambda.1    = 0.10,     # 1/m
                 lambda.2    = 0.10,     # m2/gDM                  
                 t.max       = 230,      # d
                 I0.min      = 25,       # W/m2
                 I0.max      = 225,      # W/m2
                 T.min       = 5,        # degC
                 T.max       = 25))      # degC

# extend growth of algae and zooplankton by considering environmental factors:

gro.ALG.ext <-
   new(Class  = "process",
       name   = "Growth of algae extended",
       rate   = expression(k.gro.ALG
                           *exp(beta.ALG*(T-T0))
                           *C.HPO4/(K.HPO4+C.HPO4)
                           *log((K.I+I0)
                                /(K.I+I0*exp(-(lambda.1+lambda.2*C.ALG)*h.epi)))
                            /((lambda.1+lambda.2*C.ALG)*h.epi)
                           *C.ALG),
       stoich = list(C.ALG  = 1,                            # gDM/gDM
                     C.HPO4 = expression(-alpha.P.ALG)))    # gP/gDM

gro.ZOO.ext <- 
             new(Class  = "process",
                 name   = "Growth of zooplankton",
                 rate   = expression(k.gro.ZOO
                                     *exp(beta.ZOO*(T-T0))
                                     *C.ALG
                                     *C.ZOO),
                 stoich = list(C.ZOO  = expression(1),              # gDM/gDM
                               C.ALG  = expression(-1/Y.ZOO)))      # gP/gDM

# re-define processes in the reactor "epilimnion":

epilimnion@processes <- list(gro.ALG.ext,death.ALG,gro.ZOO.ext,death.ZOO)

# make environmental conditions (light and temperature) time dependent:

epilimnion@cond <- list(I0 = expression(0.5*(I0.min+I0.max)+
                                          0.5*(I0.max-I0.min)*
                                          cos(2*pi/365.25*(t-t.max))),   # W/m2
                        T  = expression(0.5*(T.min+T.max)+
                                          0.5*(T.max-T.min)*
                                          cos(2*pi/365.25*(t-t.max))))  # degC

# plot the environmental conditions

t <-  seq(1,2*365) # for two years
I0 <- numeric(0)
T <- numeric(0)  
for(i in 1:length(t))
{
  I0[i] <- eval(epilimnion@cond$I0, envir=c(param, t=t[i]))
  T[i]  <- eval(epilimnion@cond$T, envir=c(param, t=t[i]))
}
par(mfrow=c(1,2),xaxs="i",yaxs="i",mar=c(4.5,4.5,2,1.5)+0.1)                                 
plot(t, I0, type="l")
plot(t, T, type="l")

# re-define the reactor "epilimnion" in the system definition:

system.11.2.b@reactors <- list(epilimnion)

# increase algal growth rate to compensate for new limitations:

param$k.gro.ALG <- 0.8

# replace parameters in the system definition:

system.11.2.b@param <- param

Second, redo the simulations and plot and interpret the behavior of the solutions.

# redo simulations and plot results:
res.11.2.b <- calcres(system.11.2.b)
                    
plotres(res=res.11.2.b, colnames=list("C.HPO4",c("C.ALG", "C.ZOO")))

plotres(res=res.11.2.b[1:365,], colnames=list("C.HPO4",c("C.ALG", "C.ZOO")))

plotres(res      = res.11.2.b,    # plot to pdf file
        colnames = list("C.HPO4",c("C.ALG","C.ZOO")),
        file     = "exercise_2_results_b.pdf",
        width    = 10,
        height   = 5)

We compare the two simulations.

# comparison of the two simulations:

plotres(res      = list(const=res.11.2.a,dyn=res.11.2.b),
        colnames = list("C.HPO4","C.ALG","C.ZOO"))

plotres(res      = list(const=res.11.2.a,dyn=res.11.2.b),
        colnames = list("C.HPO4","C.ALG","C.ZOO"),
        file     = "exercise_2_results_b.pdf",
        width    = 10,
        height   = 8)

Task 3: Sensitivity analyis for constant driving forces

Fill in the missing terms and perform a sensitivity analysis of the model results to the parameters

\(C_{in, HPO^{2-}_{4}}\), \(Q_{in}\), \(k_{gro,ALG}\), \(k_{death,ALG}\), \(k_{gro,ZOO}\), \(k_{death,ZOO}\), and \(Y_{ZOO}\)

by modifying their values by factors of 2 and 1/2 for the model under constant driving forces using the function calcsens. Interpret the results. Hint: look at the solution of the Task 5 of Exercise 1.

# Sensitivity analysis with constant driving forces
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# calculate results of sensitivity analysis: TO BE COMPLETED
res.11.2.a.sens <- calcsens(...,
                            param.sens=...)

# plot results:
plotres(res      = res.11.2.a.sens,
        colnames = list("C.HPO4","C.ALG", "C.ZOO"))

plotres(res      = res.11.2.a.sens,
        colnames = list("C.HPO4","C.ALG", "C.ZOO"),
        file     = "exercise_2_results_a_sens.pdf",
        width    = 10,
        height   = 8)

Task 4 - Homework: Sensitivity analyis for seasonally varying driving forces

Do a sensitivity analysis for seasonally varying driving forces and discuss the differences to the case with constant driving forces.

# TO BE COMPLETED

Theory questions

  1. Are the algae concentrations controlled bottom-up (by phosphate limitation) or top-down (by grazing of zooplankton)?

  2. What is the reason for oscillating concentrations under constant driving forces? What happens when you introduce periodic driving forces?

  3. What are the main deficits of the model compared to a real lake?

  4. What is your expectation regarding the response of the model to the change in each parameter, does the result match your expectation and can you explain the observed changes?