Exercise 4

Modelling Aquatic Ecosystems FS24

1

Today's agenda

- Introduction to today's model 11.4
- Work on the exercise on your own
- Break
- Discuss the results and the questions of the exercise
- Work on your own model and take the opportunity to ask questions

Recap of last weeks

- Process stoichiometry (chapter 4.3)
- Biological processes (chapter 8)
 - Primary production, respiration, death, consumption
 - Mineralization (oxic, anoxic)
 - Nitrification
- Mass balance in a continuous multi-reactor system (chapter 3.3)
- Physical processes (chapters 6.1 to 6.3)
 - Transport and mixing in lakes (stratification, plunging of inflows, horizontal and vertical mixing)
 - Sedimentation
 - Gas exchange

Advection-diffusion-reaction equation:

$$\frac{\partial C}{\partial t} + \frac{\partial (v_x C)}{\partial x} + \frac{\partial (v_y C)}{\partial y} + \frac{\partial (v_z C)}{\partial z} \\ = \frac{\partial}{\partial x} \left(D_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_y \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial C}{\partial z} \right) + r$$

Two box biogeochemical-ecological lake model

Process table of today's model

Process	Substances / Organisms	Rate
Growth of algae NO_3^-		$\rho_{\rm gro, A LG, NO_3^-}$
Growth of algae NH_4^+		$\rho_{\rm gro, A LG, NH^+}$
Respiration of algae		$\rho_{\rm resp,ALG}$
Death of algae		$ ho_{ m death,ALG}$
Growth of zooplankton		$ ho_{ m gro,ZOO}$
Respiration of zoopl.		$\rho_{\rm resp, ZOO}$
Death of zooplankton		₽d eat h,ZOO
Nitrification		Pnitri
Oxic mineral. of org. part.		$\rho_{\min er, \infty, POMD}$
Ox. min. of org. part. in sed.		$\rho_{\text{miner},\infty,\text{SPOMD}}$
Anox. min. of org. part. in sed.		$\rho_{\rm miner, anox, SPOMD}$
Sed. of deg. org. part.		$\rho_{\rm sed, POMD}$
Sed. of inert org. part.		$\rho_{\rm sed, POMI}$

Table 11.9: Process table of the model for biogeochemical cycles in a lake.

Time to work on Exercise 4

How and why do we differentiate oxic and anoxic mineralization ?

In a more realistic model

In our two-box model

Discuss the results

Drogoog	1					Substan	aas / Organiana			
r rocess	$^{\mathrm{HPO}_{4}^{2-}}_{\mathrm{gP}}$	$^{ m NH_4^+}_{ m gN}$	$rac{\mathrm{NO}_3^-}{\mathrm{gN}}$	O_2 gO	ALG gDM	ZOO gDM	POMD gDM	POMI gDM	spomd gDM	SPOM gDM
Growth of algae NO_3^-	_		_	+	1					
Growth of algae NH_4^+	-	_		+	1					
Respiration of algae	+	+		_	$^{-1}$					
Death of algae	0/+	0/+		0/+	$^{-1}$		$(1 - f_{\rm I})Y_{\rm ALG, death}$	$f_{ m I}Y_{ m ALG, death}$		
Growth of zooplankton	+	+		_	$\frac{-1}{V_{TOO}}$	1	$\frac{(1-f_{\rm I})f_{\rm e}}{V_{\rm TOO}}$	$\frac{f_{\rm I}f_{\rm e}}{V_{\rm TOO}}$		
Respiration of zoopl.	+	+		_	1200	$^{-1}$	1200	1200		
Death of zooplankton	0/+	0/+		0/+		$^{-1}$	$(1-f_{\rm I})Y_{\rm ZOO,death}$	$f_{ m I}Y_{ m ZOO,death}$		
Nitrification		$^{-1}$	+	_						
Oxic mineral. of org. part.	+	+		_			$^{-1}$			
Ox. min. of org. part. in sed.	+	+		_					$^{-1}$	
Anox. min. of org. part. in sed.	+	+	_						-1	
Sed. of deg. org. part.							$^{-1}$		1	
Sed. of inert org. part.								$^{-1}$		1

Table 11.9: Process table of the model for biogeochemical cycles in a lake.

Question 4: Look at the mass balance for P and N. If there is a difference between input and output + accumulation, where does it come from?

# Phosphorus mass b	balance:	
nr.days <- (as.num nr.steps <- (nrow(n	<pre>meric(rownames(res.11.4)[nrow(res.11.4)])-as.numeric(rownames(res.11.4)[1])) res.11.4)-1)</pre>	
F.in.P <- c(HPO4	= param\$Q.in*param\$C.HPO4.in*nr.days*86400/1e6)	
F.out.P <- c(HPO4	<pre>= sum(param\$Q.in*res.11.4[,"C.HP04.Epi"])*nr.days/nr.steps*86400/1e6,</pre>	
ALG	<pre>= sum(param\$Q.in*res.11.4[,"C.ALG.Epi"]*param\$alpha.P.ALG)* nr.days/nr.steps*86400/1e6,</pre>	
Z00	<pre>= sum(param\$Q.in*res.11.4[,"C.ZOO.Epi"]*param\$alpha.P.ZOO)* nr.days/nr.steps*86400/1e6.</pre>	
POMD	<pre>= sum(param\$Q.in*res.11.4[,"C.POMD.Epi"]*param\$alpha.P.POM)* nr.days/nr.steps*86400/1e6.</pre>	
POMI	<pre>= sum(param\$Q.in*res.11.4[,"C.POMI.Epi"]*param\$alpha.P.POM)* nr.days/nr.steps*86400/1e6)</pre>	
Acc.P <- c(HPO4	<pre>= param\$A/1e6* ((param\$h.epi*res.11.4[nrow(res.11.4),"C.HP04.Epi"]+ param\$h.hypo*res.11.4[nrow(res.11.4),"C.HP04.Hypo"])- (param\$h.epi*res.11.4[1,"C.HP04.Epi"]+ param\$h.hypo*res.11.4[1,"C.HP04.Hypo"])),</pre>	
ALG	<pre>= param\$A/1e6*param\$alpha.P.ALG* ((param\$h.epi*res.11.4[nrow(res.11.4),"C.ALG.Epi"]+ param\$h.hypo*res.11.4[nrow(res.11.4),"C.ALG.Hypo"])- (param\$h.epi*res.11.4[1,"C.ALG.Epi"]+ param\$h.hypo*res.11.4[1,"C.ALG.Hypo"])),</pre>	
Z00	<pre>= param\$A/1e6*param\$alpha.P.Z00* ((param\$h.epi*res.11.4[nrow(res.11.4),"C.Z00.Epi"]+ param\$h.hypo*res.11.4[nrow(res.11.4),"C.Z00.Hypo"])- (param\$h.epi*res.11.4[1,"C.Z00.Epi"]+ param\$h.hypo*res.11.4[1,"C.Z00.Hypo"])),</pre>	

Run this part of the script to get the average mass fluxes of P and N (input, output and accumulation) (see Table 11.11)

₹ <u>↓</u>									
Flux	Substances	Phosphorus (t/a)	Nitrogen (t/a)						
Input	HPO_4^{2-}, NO_3^{-}	12.6	158						
Output	$HPO_4^{2-}, NO_3^-, NH_4^+$	9.3	127						
	ALG, ZOO, POMD, POMI	1.2	11.5						
Accumulation	$HPO_4^{2-}, NO_3^-, NH_4^+$	1.2	-7.4						
	ALG, ZOO, POMD, POMI	0.0	0.1						
	SPOMD	0.0	0.2						
	SPOMI	1.0	8.6						
Loss	Denitrification of NO_3^-	0.0	18.0						

Process			Rate						
	$\rm NH_4^+$	NO_3^-	N_2	HPO_4^{2-}	HCO_3^-	H^+	H_2O	POM	
	gN	$_{\rm gN}$	$_{\rm gN}$	$_{\mathrm{gP}}$	\mathbf{gC}	mol	mol	gDM	
Anoxic miner.	+	—	+	+	+	?	?	$^{-1}$	$\rho_{\rm miner,anox,POM}$

Table 8.6: Process table of anoxic mineralization.

Work on your own model

- If you didn't tell us yet which model you chose, it's time to do it!
 Team up with someone, choose a topic and inform us which one you picked.
- Read the assignment carefully and start thinking about how to modify today's model 11.4.
- Don't hesitate to ask questions !