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Goals of the Course

The students (you!) are able to

* build mathematical models of aquatic ecosystems that consider
the most important biological, biogeochemical, and physical
processes;

« explain the interactions between these processes and the behavior
of the system that results from these interacting processes;

« implement and apply these ecological models;

» learn the key concepts of model calibration and
the consideration of stochasticity and uncertainty.

Emphasis is on integrating knowledge in the form of models,
on their use for improving the understanding and management
of aquatic ecosystems and on their limitations.
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Goals of the Exercises

 Hands-on experience with
model implementation, simulation, sensitivity analysis,
and discussion of the behavior of a series of ecosystem models
of increasing complexity
to deepen and extend the knowledge gained in the lectures

« (Gain some experience with R
(also useful for statistical data analysis in future projects)

Emphasis is on improving the understanding of the behavior of the
models and the aquatic ecosystems, not on programming.
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Prerequisites and Time investment

Basic knowledge about structure and functioning of aquatic ecosystems
as well as about analysis, differential equations, linear algebra and
probability.

The time for the exercises will be provided during the course.
This decreases the time for lectures and makes them quite intensive.
You will need time between the course hours to read the manuscript.

Approximate time budget (3 credit points = 75-90 hours study time):
25-30 hours: Course attendance including supervised exercise time
25-30 hours: Reading the manuscript and preparing exercises

25-30 hours: Preparation of your own model and the oral exam.
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Administrative Aspects

Course and exercises will take place Wednesday 10:15 - 12:00 in LFW B2

Please install before the exercise:
A current version of R (http://www.r-project.org),
the editor R-Studio (http://www.rstudio.org),

and the R-package ecosim: install.packages(c("ecosim™))

Introduction to R programming:

Program, manuscript, exercises etc. can be downloaded from:

http://www.eawag.ch/forschung/siam/lehre/modagecosys


https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf
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Administrative Aspects

There will be an oral exam in the two weeks after the semester 02.-13.06.25

During the semester you will develop and implement your own model
(in groups of two), interpret simulation results and perform a sensitivity analysis.

We will assign topics on 02.04.25.

Deadline for initial code submission: 08.05.25
Deadline for submission of R-files, results and interpretation: 23.05.25

This is mandatory for being admitted to the exam! In the oral exam we will start
with questions about your model before moving on to other topics.

Use the time in the exercises to ask questions and get help!
Don'’t do it last minute.
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Structure of the Manuscript

1 Introduction
| Basic Concepts

2 Principles of Modelling Environmental Systems
3 Formulation of Mass Balance Equations
4 Formulation of Transformation Processes
5 Behaviour of Solutions of ODE models
Il Formulation of Ecosystem Processes
6 Physical Processes
7 Chemical Processes
8 Biological Processes
Il Stochasticity, Uncertainty and Parameter Estimation
9 Consideration of Stochasticity and Uncertainty
10 Parameter Estimation
IV Simple Models of Aquatic Ecosystems
11 Simple Models of Aquatic Ecosystems
V Advanced Aquatic Ecosystem Modelling
12 Extensions of Processes and Model Structure

13 Research Models of Aquatic Ecosystems »
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Structure of the Course

1. Introduction, principles of modelling environmental systems, mass balance in
a mixed reactor, process table notation, simple lake plankton model
Exercise: R, ecosim-package, simple lake plankton model
Exercise: lake phytoplankton-zooplankton model

Process stoichiometry Exercises: analytical solution, calculation with stoichcalc
Biological processes in lakes

Physical processes in lakes, mass balance in multi-box and continuous

systems Exercise: structured, biogeochemical-ecological lake model
Assignments: build your own model by implementing model extensions

5. Physical processes in in rivers, bacterial growth, river model for benthic
populations Exercise: river model for benthic populations, nutrients and oxygen

6. Uncertainty, Parameter estimation, Stochasticity

Exercise: parameter estimation
Exercise: stochasticity, uncertainty

7. Existing models and applications in research and practice, examples and case
studies, preparation of the oral exam, feedback

12
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Questions?

14
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Lecture 1: Goals

® Acquire basic knowledge of the formulation of transport and
transformation processes to formulate a simple lake plankton
model.

® Become familiar with the process table notation and rate
formulation that will be the basis of the more complex models.
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Motivation for ecosystem modelling?

What's your motivation to learn ecosystem modelling?

16
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Motivation for ecosystem modelling?

chapter 1
1. Improving understanding of ecosystem function:

Test of quantitatively formulated hypotheses about system
mechanisms. Estimation of fluxes and conversion rates.
Stimulation of thinking about the function of an ecosystem.

2. Summarizing and communicating knowledge:
Ecosystem models are perfect communication tools for
exchanging quantitatively formulated knowledge of the
processes in the ecosystem. A systematic notation facilitates
the use of models for this purpose significantly.

3. Supporting ecosystem management:
Prediction of the consequences of suggested measures.
Estimation and consideration of prediction uncertainty is
essential for this purpose of ecosystem modelling.

17
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Zonation of aquatic ecosystems

Pelagic zone:

Water body not close to sediment and shore or bank.

Litoral zone:

Water body close to the shore or bank and the adjacent
periodically inundated area.

Benthic zone:

Water body above the sediment and the top sediment layers.

Interstitial zone:

Pore space in the sediment below the benthic zone.

18
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Pelagic / Benthic Food Webs
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Imagine your favorite lake or stream...

To draw the food-web of this system, what are important organism groups
to consider and what do they feed on?

19
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Pelagic Food Web eawag
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Benthic Food Web eawag
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Transport Processes In a Lake

T exchange of radiation, heat, momentum and gases
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Transport Processes In a River
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Principles of Modelling
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Meaning of models

system model

~
/ [ \ external influence factors
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abstraction
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of behaviour

— many (rather arbitrary) choices and assumptions!
— model has to fit the purpose!

25
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Principles of Modelling

Formulation of ecosystem models

Essential techniques: Empirical relationships and mass-balance
equations.

Typical form of an environmental model:

Mechanistic description of mass conservation - use of empirical
expressions for the formulation of transformation and transfer
processes.

26



ETHzurich
athgrﬂgg (eYeYo]

Learning with models

generation and revision of
hypotheses (in model form)

new theories
disagree-
ment

comparison
of model predictions
with available data

(test of the model)

agreement

planning and carrying out of
experiments or measurements
that are expected to be
sensitive to the hypotheses

27
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Clarification of terms

Mathematical Model: Simplified mathematical description y=ax+b

of a (real) system dy/dt = a*x(t)*y- b*y

Input variable: External influence factor,
predictor / explanatory / independent variable

Output variable: State / response / dependent variable y

Parameter: (Unknown) variable needed to relate input to output a, b

28
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Model types

Mechanistic models (aka process-based, causal models)

« are knowledge/theory driven,
explicitly describe mechanisms/processes to relate input and output

» parameters have a (physical, biological) meaning, are not necessarily calibrated

e.g.: individual based models, population / predator-prey / food web / community models based on ordinary
differential equations, meta-community models, ecosystem models

Empirical models
« are data driven, based on empirical relationship between input and output

a) Statistical models: parameters are calibrated, do not have a (physical, biological)

meaning, still interpretable, make statistical assumptions that can be tested
e.g. multivariate regression models, autoregressive time series models

b) Machine learning algorithms: parameters are (usually) not interpretable,

do not make statistical assumptions, are typically perceived as "black box"
e.g. (deep) artificial neural networks, random forests, boosted regression

outputs

29

input layer hidden layer output layer
Wikimedia-Commons CC BY-SA 3.0
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chapter 3.1

30
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General Mass Balance

™S

m "masses" [m], J (net) inputs [m/T], R (net) production [m/T]

31
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General Mass Balance

Integral form: calculate "mass" at f.,q from "mass" at t¢;,; by
adding net inputs and net production:

tend tend
m (fond) = M (i) + f Ity dt+ [ R dt
lini lini
Differential form: substitute 7.,q with ¢ and differentiate:

dm

“R(t) = () + RV

32
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Mass Balance in a Mixed Reactor
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chapter 3.2
Jint
Qim Cin e Qouta C
— —

C concentration [M/L?]

D surface density [M/L?]

Qi inflow, Quu¢ outflow [L3/T]
Jint flux across the interface [M/T]

33
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Mass Balance in a Mixed Reactor

(N Qin — Qous \ [0

Qincin,l — Qoutcl + L}rint,l V?"C’l
VCQ QinOin,Q - QoutCZ + Jr1111;,2 VTCQ
m = Vonv 3 J = Qincin,ns — Qoutcns + Jint,nv y R = VTCRV
ADl 0 ATD1
ADQ 0 ATDQ
\ ap.. )\ 0 ) \am, )

m "masses" [m], J (net) inputs [m/T], R (net) production [m/T]
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Mass Balance in a Mixed Reactor
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Mass Balance in a Mixed Reactor

dV

E — Qin — Qout

Cft(vc) = 00Cin — QuuC + Ty + Ve

(i(AD) — Arp

36



ETHzurich

Mass Balance in a Mixed Reactor

dV
E — Qin T Qout
dC L Qin Jillt
dt v (Cn=©) e
dD

37
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Lake Phytoplankton Model

I i ; E le 11.1
Differential Equations xample

net input vila in/outflow

\

(OHPCM in — CHPO4) consumption by algae
} \
{ CHpO4 ‘
— P ALG * Foro, ALG CaLc
Kypos + Chpos

dCrpos :’ Qin
dt V

loss via outflow growth of ?'939

dCarc Qin o CHpou4
———— = ———CALc + koro.ALG CaLc
dt V SO Kipoa + Crpou

— kdeath.ALCG CALG

\ )
|

death of algae
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Process Table Notation
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chapter 4.1
Process Substances Rate
S S92 S3 T Sne
P1 11 V12 13 e Vng P21
P2 121 129 123 - Vong P2
Pnp Unpl  Vnp2 Vnp3d " Vnpgng | Png

Substance transformation rate in homogeneous environment:

np

ri =Y Vijpi
=1

One of the (non-zero) stoichiometric coefficients, 7;;, in each row can be
selected to be plus or minus unity. This makes the corresponding process
rate, p;, to the (positive or negative) contribution of this process to the

total transformation rate of the corresponding substance, s;. .
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Process Table Notation

40
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Typical Elements of Process Rates

chapter 4.2

Process rate with maximum /standard specific growth rate and
non-dimensional modification factors that account for the influence
of temperature, light intensity, nutrients, etc.

Pero ALG = kgro,ALG,Tg : ftemp (T) : frad (I)
- f lim(OHPoj— ’ CNHI? ONog) - CaLc

Pminer,anox, POM — kminer,anoxiPOM,To ’ ftemp(T)
- finn(C0,) - fiim(Cyoz) - Cron

41
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Temperature dependence factor
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Exponential:

fob (1) = exp(B(T = Ty))
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Typical Elements of Process Rates

Temperature dependence factor

=
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Exponential:
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Typical Elements of Process Rates

Limitation by substance concentrations

Monod: o
Monod
. ) —
lim ( ) K—I—C
Exponential:
CP(C) =1 —ex (—O)
lim - P K
Blackman:
g for C < K
1];:’;11&(31{1’11&11(0) _ K
1 forC > K
Monod Quadratic:
02
Monodqguad
lim ! (C)

T K2+ (7

44
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Typical Elements of Process Rates

Limitation by substance concentrations
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Typical Elements of Process Rates

Limitation by substance concentrations

-----

-----

aaaaa

_K—I—C 46
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Typical Elements of Process Rates

Limitation by multiple substances
Product:

In (Capos. Cnma. ONO3)
_ Crpo4 - Oxma+ Cnos
Kupos + Cupos  Kn + Cnpa + CNoO3

Minimum (Liebig's Law):

N (Capos. Cnma. ONO3)
—in ( CHpO4 Cnpa + ONos )
Kypos + Crupos” Kn + Cnps + CNoO3

47
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Typical Elements of Process Rates

Inhibition by substance concentrations

Monod: P

Monod

. () =

inh ( ) K—I—O
Exponential:

) o (-5)

inh - P K

Blackman:
C
iELacknlan(O) _ { 1 — ? for C' < K

0 for C > K

Monod Quadratic:

f.Monodquad ( C) _ K .
inh K2 + (2 48
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Typical Elements of Process Rates
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Inhibition by substance concentrations
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Typical Elements of Process Rates
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Inhibition by substance concentrations

fMonod inh

.....

eawag
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Typical Elements of Process Rates

Light dependence factor

Monod: I
Monod
[) =

frad ( ) KI‘I‘I
Smith: ;

Smith (1) =

\/K§ + I?

Steele:

cele I I
- Lo (1-1)

I opt I opt
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Typical Elements of Process Rates

Light dependence factors
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Typical Elements of Process Rates

Light attenuation:

I(z) = Ipexp(—Az);

E
N
2 _|
—— lambda = 0.5/m
---- lambda = 0.2/m
-------- lambda = 0.1/m
o
N | ! | |
00 02 04 06 08 1.0

/1o
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Typical Elements of Process Rates

Light attenuation

For a model with a mixed reactor, the light dependence factor (and
not the light itself!) has to be averaged across depth.

Average light dependence factor:

_ 1 rh
FralTo \h) = = [ fraa (Toexp(=22) )z
0

54
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Typical Elements of Process Rates

Average light dependence factors
Monod:

fMonod (1) A h) = 1 log (

Kr+ Iy
DY,

Ky + Iyexp(—Ah)
Smith:

( Io I \? \
! ki \/ (&)

o (Lo, A h) = VA log

Steele:

rSteele € IO e};p(—)\h) IU
Io. N h) = — |lexp | — —exp [ —
od (Lo, A h) v [ekp ( Iopt exp Iopt
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Typical Elements of Process Rates Sawag...

Preference Among Different Food Sources
Many organisms can grow on different food sources.

As the stoichiometry and kinetics of growth on one food source
may be different from that on another, it is best to represent
growth on different food sources by different processes.

The process rates of these processes can still have many terms in
common. But they also need a preference factor that depends on
the concentrations of all food sources.

56



ETHzurich

Typical Elements of Process Rates

Preference Among Different Food Sources

Simplest conceptually satisfying expression:

Pi C';

j=1

n: food sources with concentrations (', ..., C,,,
pj: preference coefficient for food source ;.
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Process Table

chapter 11.1

Process Substances / Organisms | Rate
HPO4 ALG
[gP/m”’]  [gDM/m’]
Growth of algae | —ap aLc 1 Pgro, ALG
Death of algae —1

Pdeath, ALG

58
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Lake Phytoplankton Model

Process Rates

_ Chpos c
Pero, ALG — Fgro, ALG ALG
Kupos + Chpou

Pdeath ALG = Kdeath.ALG CALG

59
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Lake Phytoplankton Model

Transformation Rates

B I Chrou C
THPO4 = —OP ALG * Fero, ALC I7 s ALC
HPO4 HPO4

C’HP'O&_L

FALG = Kgro ALG Carc — Kdeath AL CaLc

Kupos + Cupos
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Lake Phytoplankton Model

Mass Balance in Well-Mixed Epilimnion

dC Qin Jint
@ = (CnC)

_ [ Curos [ Cupodin (0
c-{am) (M) ()
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Lake Phytoplankton Model

Mass Balance in Well-Mixed Epilimnion

dC - Qin Jint
@ = (Ca—C) T

Differential Equations

dChpos _ Qin
dt V

dCarLc Qin

dt V

(CHP04,in — CHPO4> + THPO4

Carc + 7raLc
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Lake Phytoplankton Model

Differential Equations

dCxpos @
ST I}n (OHPOéL}iH — CHPO4)
— AP ALG * kero ALG Ciipos CALc
’ SR Kipoa + Crpou
dCarc Qin CHprou
Ny C
iy o CALG T RgoaLc e T CALG

— kdeath.ALCG CALG
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Lake Phytoplankton Model

I i ; E le 11.1
Differential Equations xample

net input vila in/outflow

\

(OHPCM in — CHPO4) consumption by algae
} \
{ CHpO4 ‘
— P ALG * Foro, ALG CaLc
Kypos + Chpos

dCrpos :’ Qin
dt V

loss via outflow growth of ?'939

dCarc Qin o CHpou4
———— = ———CALc + koro.ALG CaLc
dt V SO Kipoa + Crpou

— kdeath.ALCG CALG

\ )
|

death of algae
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Lake Phytoplankton Model

Extended Process Rates

Additional influence factors of algae growth rate to account for
yearly cycles in temperature and light.

Pgro, ALC = kgro,ALG - €XP (ﬁALG (T — TD))

11 ( Kr+ 1y ) CHPO4
0og

L . .
Ah Ki+ Ipexp(=Ah) ) Kupos + CuposH¢
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Lake Phytoplankton Model

Seasonally Varying Environmental Conditions

Tmax Tmin Tmax — Tmin t— tmax
T'(t) = —2|- + 5 COS (21? )

tper

- 2 9

ID (t) o IO,max + IU,min + IU,max - IO,min COS (Qﬂ_t _t tmax)
per
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Lake Phytoplankton Model

Results for constant environmental conditions

C.HPO4 C.ALG

- — C.HPO4 — CALG

0.008
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I |
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L— o
| | | | | | | | | | | | | |
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0.000
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t t
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Lake Phytoplankton Model

Results for periodic environmental conditions
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Lecture 1: Goals

® Acquire basic knowledge of the formulation of transport and
transformation processes to formulate a simple lake plankton
model.

® Become familiar with the process table notation and rate
formulation that will be the basis of the more complex models.

C.HPO4 C.ALG

— CHPO4 — CALG
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Outlook next week

1. Introduction, principles of modelling environmental systems, mass balance in
a mixed reactor, process table notation, simple lake plankton model
Exercise: R, ecosim-package, simple lake plankton model
Exercise: lake phytoplankton-zooplankton model

Process stoichiometry Exercises: analytical solution, calculation with stoichcalc
Biological processes in lakes

Physical processes in lakes, mass balance in multi-box and continuous

systems Exercise: structured, biogeochemical-ecological lake model
Assignments: build your own model by implementing model extensions

5. Physical processes in in rivers, bacterial growth, river model for benthic
populations Exercise: river model for benthic populations, nutrients and oxygen

6. Uncertainty, Parameter estimation, Stochasticity

Exercise: parameter estimation
Exercise: stochasticity, uncertainty

7. Existing models and applications in research and practice, examples and case
studies, preparation of the oral exam, feedback
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Preparation for next week eawag

aquatic research

1. Install a current version of R and R-Studio and the ecosim-package
on your notebook - see Program

2. If you are not very familiar with R, do the tutorial:
https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

3. Read chapter 11.1 about the first didactical model
4. Read chapters 16.1 and 16.2 about the ecosim-package.

5. Think about your open questions to ask them next week!
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