Staff

Andreas Scheidegger

Extbase Variable Dump
'fileadmin/user_upload/tx_userprofiles/profileImages/scheidan.jpg' (64 chars)

Andreas Scheidegger

Statistics, Data Science & Modeling

Department Systems Analysis, Integrated Assessment and Modelling

About Me

Research Interest
As a statistician, my focus is on applying statistical techniques, machine learning, and applied mathematics to develop models to accurately examine scientific hypotheses and support decision-making.

Mathematical modeling is a fundamental tool in science, used to extract knowledge from data, integrate available information, or predict future states of a system. Models must be tailored to the specific scientific questions being addressed, ensuring that all available information, including data, system understanding, and expert opinions, is fully utilized.

In addition to the technical aspects of modeling, I place a strong emphasis on effective communication, which is crucial for successful collaboration. It is essential that users understand the underlying assumptions and limitations of a model to ensure its proper application.

Collecting scientific data from field observations or experiments is often labor-intensive and expensive—my goal is to ensure the best possible use of this hard-earned data.

Methods and Tools
Some topics and methods I work with or I am interested in:

  • Bayesian Inference
  • Gaussian Processes
  • Data assimilation
  • Machine Learning
  • Artificial Neuronal Networks, Deep Learning
  • LLM and AI
  • Uncertainty Quantification
  • Causal Inference
  • Graphical (hierarchical) Models

For implementation I use among others Julia, R, Python, STAN, Emacs.

[[ element.title ]]

[[ element.title ]]

Curriculum Vitae

[[ entry.date || 'empty' ]]

[[ element.title ]]

Publications

[[item.title]]
Chollet Ramampiandra, E.; Scheidegger, A.; Wydler, J.; Schuwirth, N. (2023) A comparison of machine learning and statistical species distribution models: Quantifying overfitting supports model interpretation, Ecological Modelling, 481, 110353 (11 pp.), doi:10.1016/j.ecolmodel.2023.110353, Institutional Repository
Höge, M.; Scheidegger, A.; Baity-Jesi, M.; Albert, C.; Fenicia, F. (2022) Improving hydrologic models for predictions and process understanding using neural ODEs, Hydrology and Earth System Sciences, 26(19), 5085-5102, doi:10.5194/hess-26-5085-2022, Institutional Repository
Aubert, A. H.; Scheidegger, A.; Schmid, S. (2023) Gamified online surveys: Assessing experience with self-determination theory, PLoS One, 18(10), e0292096 (20 pp.), doi:10.1371/journal.pone.0292096, Institutional Repository
Fernandez-Cassi, X.; Scheidegger, A.; Bänziger, C.; Cariti, F.; Tuñas Corzon, A.; Ganesanandamoorthy, P.; Lemaitre, J. C.; Ort, C.; Julian, T. R.; Kohn, T. (2021) Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high, Water Research, 200, 117252 (9 pp.), doi:10.1016/j.watres.2021.117252, Institutional Repository
Fu, Q.; Scheidegger, A.; Laczko, E.; Hollender, J. (2021) Metabolomic profiling and toxicokinetics modeling to assess the effects of the pharmaceutical diclofenac in the aquatic invertebrate Hyalella azteca, Environmental Science and Technology, 55(12), 7920-7929, doi:10.1021/acs.est.0c07887, Institutional Repository
Caradima, B.; Scheidegger, A.; Brodersen, J.; Schuwirth, N. (2021) Bridging mechanistic conceptual models and statistical species distribution models of riverine fish, Ecological Modelling, 457, 109680 (15 pp.), doi:10.1016/j.ecolmodel.2021.109680, Institutional Repository
Gold, M.; Egger, J.; Scheidegger, A.; Zurbrügg, C.; Bruno, D.; Bonelli, M.; Tettamanti, G.; Casartelli, M.; Schmitt, E.; Kerkaert, B.; De Smet, J.; Van Campenhout, L.; Mathys, A. (2020) Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestion, Waste Management, 112, 40-51, doi:10.1016/j.wasman.2020.05.026, Institutional Repository
Blumensaat, F.; Leitão, J. P.; Ort, C.; Rieckermann, J.; Scheidegger, A.; Vanrolleghem, P. A.; Villez, K. (2019) How urban storm- and wastewater management prepares for emerging opportunities and threats: digital transformation, ubiquitous sensing, new data sources, and beyond – a horizon scan, Environmental Science and Technology, 53(15), 8488-8498, doi:10.1021/acs.est.8b06481, Institutional Repository
Penn, R.; Maurer, M.; Michalec, F.-G.; Scheidegger, A.; Zhou, J.; Holzner, M. (2019) Quantifying physical disintegration of faeces in sewers: stochastic model and flow reactor experiments, Water Research, 152, 159-170, doi:10.1016/j.watres.2018.12.037, Institutional Repository
Mutzner, L.; Vermeirssen, E. L. M.; Mangold, S.; Maurer, M.; Scheidegger, A.; Singer, H.; Booij, K.; Ort, C. (2019) Passive samplers to quantify micropollutants in sewer overflows: accumulation behaviour and field validation for short pollution events, Water Research, 160, 350-360, doi:10.1016/j.watres.2019.04.012, Institutional Repository
Spuhler, D.; Scheidegger, A.; Maurer, M. (2018) Generation of sanitation system options for urban planning considering novel technologies, Water Research, 145, 259-278, doi:10.1016/j.watres.2018.08.021, Institutional Repository
Wani, O.; Scheidegger, A.; Carbajal, J. P.; Rieckermann, J.; Blumensaat, F. (2017) Parameter estimation of hydrologic models using a likelihood function for censored and binary observations, Water Research, 121, 290-301, doi:10.1016/j.watres.2017.05.038, Institutional Repository
McCall, A.-K.; Scheidegger, A.; Madry, M. M.; Steuer, A. E.; Weissbrodt, D. G.; Vanrolleghem, P. A.; Kraemer, T.; Morgenroth, E.; Ort, C. (2016) Influence of different sewer biofilms on transformation rates of drugs, Environmental Science and Technology, 50(24), 13351-13360, doi:10.1021/acs.est.6b04200, Institutional Repository
Scheidegger, A.; Leitão, J. P.; Scholten, L. (2015) Statistical failure models for water distribution pipes – a review from a unified perspective, Water Research, 83, 237-247, doi:10.1016/j.watres.2015.06.027, Institutional Repository
Scheidegger, A.; Scholten, L.; Maurer, M.; Reichert, P. (2013) Extension of pipe failure models to consider the absence of data from replaced pipes, Water Research, 47(11), 3696-3705, doi:10.1016/j.watres.2013.04.017, Institutional Repository

[[ element.title ]]

[[ element.title ]]

Address

E-Mail: andreas.scheidegger@eawag.ch
Phone: +41 58 765 5053
Fax: +41 58 765 5802
Address: Eawag
Überlandstrasse 133
8600 Dübendorf
Office: FC D10

[[ element.title ]]

[[ element.title ]]

[[ element.title ]]

[[ element.title ]]

Focalpoints

Statistical Modeling

Machine Learning and Data Science

Uncertainty Quantification

Bayesian Inference

[[ element.title ]]