Département Analyse des Systèmes, Evaluation Intégrée et Modélisation

Analyse des systèmes et modelisation
Dans SIAM, nous développons et utilisons des modèles et des techniques formelles pour les systèmes naturels, techniques, sociaux et économiques concernant l'eau et autres ressources naturelles. Notre objectif est de démontrer le comportement de ces systèmes, de le comprendre et de le prédire. En savoir plus
Nouvelles publications
Qi, W., Feng, L., Liu, J., & Yang, H. (2022). Growing hydropower potential in China under 1.5 °C and 2.0 °C global warming and beyond. Environmental Research Letters, 17(11), 114049 (11 pp.). doi:10.1088/1748-9326/ac9c72, Institutional Repository
Zhang, X., Yang, H., Zhang, W., Fenicia, F., Peng, H., & Xu, G. (2022). Hydrologic impacts of cascading reservoirs in the middle and lower Hanjiang River basin under climate variability and land use change. Journal of Hydrology: Regional Studies, 44, 101253 (22 pp.). doi:10.1016/j.ejrh.2022.101253, Institutional Repository
Kyathanahally, S. P., Hardeman, T., Reyes, M., Merz, E., Bulas, T., Brun, P., … Baity-Jesi, M. (2022). Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology. Scientific Reports, 12, 18590 (11 pp.). doi:10.1038/s41598-022-21910-0, Institutional Repository
Viswanathan, M., Scheidegger, A., Streck, T., Gayler, S., & Weber, T. K. D. (2022). Bayesian multi-level calibration of a process-based maize phenology model. Ecological Modelling, 474, 110154 (16 pp.). doi:10.1016/j.ecolmodel.2022.110154, Institutional Repository
Safin, A., Bouffard, D., Ozdemir, F., Ramón, C. L., Runnalls, J., Georgatos, F., … Šukys, J. (2022). A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1. Geoscientific Model Development, 15(20), 7715-7730. doi:10.5194/gmd-15-7715-2022, Institutional Repository
Rizzo, R., Dziadosz, M., Kyathanahally, S. P., Reyes, M., & Kreis, R. (2022). Reliability of quantification estimates in MR spectroscopy: CNNs vs traditional model fitting. In L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, & S. Li (Eds.), Lecture notes in computer science: Vol. 13438. Medical image computing and computer assisted intervention - MICCAI 2022. 25th international conference, Singapore, September 18-22, 2022, proceedings, part VIII (pp. 715-724). doi:10.1007/978-3-031-16452-1_68, Institutional Repository