Abteilung Siedlungswasserwirtschaft

Städtische Überschwemmungen und Hydroinformatik

Der Schwerpunkt der Gruppe "Städtische Überschwemmungen und Hydrodynamik" liegt auf der Entwicklung schneller Modelle zur Vorhersage städtischer Überschwemmungen, um letztlich eine Echtzeit-Vorhersage städtischer Überschwemmungen zu ermöglichen. Darüber hinaus konzentriert sich die Gruppe auf die Entwicklung neuartiger Methoden zur Nutzung allgegenwärtiger Bilddaten, z. B. von Bildern aus sozialen Medien und Überwachungssystemen, um das Hochwasserverhalten in Städten besser zu verstehen und das Hochwasserrisikomanagement zu unterstützen. Ein weiteres Forschungsthema, das Teil des aktuellen Forschungsportfolios der Gruppe ist, bezieht sich auf die Entwicklung neuartiger Lösungen für die Regenwasserbewirtschaftung in Städten (von grauer bis zu blau-grüner Infrastruktur), um die Leistung der städtischen Entwässerungssysteme zu verbessern und gleichzeitig zur Bewältigung der Herausforderungen (z. B. städtische Hitze) beizutragen, die durch den Klimawandel und die zunehmende Urbanisierung entstehen.

Wenn Sie daran interessiert sind, Ihre Doktor- oder Masterarbeit in der Gruppe Städtische Überschwemmungen und Hydrodynamik zu schreiben, können Sie sich gerne an uns wenden. Nachfolgend finden Sie eine Liste von Themen, die wir gerne betreuen und die derzeit an der ETH Zürich angeboten werden:

Gruppenleitung

Team

Jixuan Chen PhD Student Tel. +41 58 765 5637 E-Mail senden
Lucas Gobatti PhD Candidate Tel. +41 58 765 5783 E-Mail senden

Projekte

Erforschung des Wertes von Regenwasser als wertvolle Ressource zur Abschwächung der städtischen Hitze
Einfluss grossflächiger, blau-grüner Infrastrukturen (BGIs) auf das pluviale Hochwasserrisiko in datenarmen, peri-urbanen Regionen.
Smart monitoring, data sharing and offering transnational access to lab and field facilities to the European Urban Drainage community.
Auswirkungen der Urbanisierung beobachten und ein urbanes Reallabor vorbereiten

Abgeschlossene Projekte

Hexagonal Grids for urban flood modelling
Cost Effective Neural Technique to Alleviate Urban flood Risk
Urban flood experiments and alternative data acquisition methods
Alternative data collection and assimilation methods for urban flood modelling
Software tools for hexagonal grids

Publikationen

Chaudhary, P., Leitão, J. P., Schindler, K., & Wegner, J. D. (2024). Flood water depth prediction with convolutional temporal attention networks. Water, 16(9), 1286 (19 pp.). doi:10.3390/w16091286, Institutional Repository
Chen, J., Bach, P. M., Nice, K. A., & Leitão, J. P. (2024). Investigating the efficacy of a fast urban climate model for spatial planning of green and blue spaces for heat mitigation. Science of the Total Environment, 955, 176925 (13 pp.). doi:10.1016/j.scitotenv.2024.176925, Institutional Repository
Fappiano, F., Maurer, M., & Leitão, J. P. (2024). Coupling sewers to the surface: systematic approaches to correcting data discrepancies for 1D-2D drainage modelling. Journal of Hydrology, 645, 132239 (14 pp.). doi:10.1016/j.jhydrol.2024.132239, Institutional Repository
Li, S., Leitão, J. P., Wang, Z., & Bach, P. M. (2024). A drainage network-based impact matrix to support targeted blue-green-grey stormwater management solutions. Science of the Total Environment, 912, 168623 (10 pp.). doi:10.1016/j.scitotenv.2023.168623, Institutional Repository
Peleg, N., Wright, D. B., Fowler, H. J., Leitão, J. P., Sharma, A., & Marra, F. (2024). A simple and robust approach for adapting design storms to assess climate-induced changes in flash flood hazard. Advances in Water Resources, 193, 104823 (9 pp.). doi:10.1016/j.advwatres.2024.104823, Institutional Repository
Wang, W., Wang, Z., Guan, M., Wani, O., Bai, Y., Wang, K., & Leitao, J. P. (2024). Evaluation of stormwater mitigation performance with LID infrastructures, in-sewer space, and real-time control strategies. Journal of Hydrologic Engineering, 29(5), 05024016 (14 pp.). doi:10.1061/JHYEFF.HEENG-6185, Institutional Repository
Carriço, N., do Céu Almeida, M., & Leitão, J. P. (2023). Management of urban drainage infrastructure. In T. Bolognesi, F. Silva Pinto, & M. Farrelly (Eds.), Routledge environment and sustainability handbooks. Routledge handbook of urban water governance (pp. 145-162). doi:10.4324/9781003057574-12, Institutional Repository
Devanand, V. B., Mubeen, A., Vojinovic, Z., Sanchez Torres, A., Paliaga, G., Abdullah, A. F., … Fröhle, P. (2023). Innovative methods for mapping the suitability of nature-based solutions for landslide risk reduction. Land, 12(7), 1357 (15 pp.). doi:10.3390/land12071357, Institutional Repository
Figueroa, A., Hadengue, B., Leitão, J. P., & Blumensaat, F. (2023). A framework for modelling in-sewer thermal-hydraulic dynamic anomalies driven by stormwater runoff and seasonal effects. Water Research, 229, 119492 (10 pp.). doi:10.1016/j.watres.2022.119492, Institutional Repository
Gobatti, L., Bach, P. M., Scheidegger, A., & Leitão, J. P. (2023). Using satellite imagery to investigate Blue-Green Infrastructure establishment time for urban cooling. Sustainable Cities and Society, 97, 104768 (11 pp.). doi:10.1016/j.scs.2023.104768, Institutional Repository
Jato-Espino, D., Charlesworth, S., Leitão, J. P., & Rodríguez Sánchez, J. P. (2023). Editorial: Urban drainage in a context of climate and land cover changes. Frontiers in Water, 4, 1118338 (2 pp.). doi:10.3389/frwa.2022.1118338, Institutional Repository
Nascimento, N., Armitage, N., Sanches, J. P. R., & Leitao, J. P. (2023). Editorial: UWJ special edition on water management in developing countries. Urban Water Journal, 20(10), 1231-1236. doi:10.1080/1573062X.2023.2266635, Institutional Repository
Peleg, N., Torelló-Sentelles, H., Mariéthoz, G., Benoit, L., Leitão, J. P., & Marra, F. (2023). Brief communication: the potential use of low-cost acoustic sensors to detect rainfall for short-term urban flood warnings. Natural Hazards and Earth System Sciences, 23(3), 1233-1240. doi:10.5194/nhess-23-1233-2023, Institutional Repository
Tondera, K., Brelot, E., Fontanel, F., Cherqui, F., Ellerbæk Nielsen, J., Brüggemann, T., … Anta, J. (2023). European stakeholders' visions and needs for stormwater in future urban drainage systems. Urban Water Journal, 20(7), 831-843. doi:10.1080/1573062X.2023.2211559, Institutional Repository
Chaudhary, P., Leitão, J. P., Donauer, T., D’Aronco, S., Perraudin, N., Obozinski, G., … Russo, S. (2022). Flood uncertainty estimation using deep ensembles. Water, 14(19), 2980 (24 pp.). doi:10.3390/w14192980, Institutional Repository
Guo, Z., Moosavi, V., & Leitão, J. P. (2022). Data-driven rapid flood prediction mapping with catchment generalizability. Journal of Hydrology, 609, 127726 (12 pp.). doi:10.1016/j.jhydrol.2022.127726, Institutional Repository
Harpaz, C., Russo, S., Leitão, J. P., & Penn, R. (2022). Potential of supervised machine learning algorithms for estimating the impact of water efficient scenarios on solids accumulation in sewers. Water Research, 216, 118247 (16 pp.). doi:10.1016/j.watres.2022.118247, Institutional Repository
Langeveld, J. G., Cherqui, F., Tscheikner-Gratl, F., Muthanna, T. M., Fernandez-Delgado Juarez, M., Leitão, J. P., … Rulleau, B. (2022). Asset management for blue-green infrastructures: a scoping review. Blue-Green Systems, 4(2), 272-290. doi:10.2166/bgs.2022.019, Institutional Repository
Peleg, N., Ban, N., Gibson, M. J., Chen, A. S., Paschalis, A., Burlando, P., & Leitão, J. P. (2022). Mapping storm spatial profiles for flood impact assessments. Advances in Water Resources, 166, 104258 (11 pp.). doi:10.1016/j.advwatres.2022.104258, Institutional Repository
Probst, N., Bach, P. M., Cook, L. M., Maurer, M., & Leitão, J. P. (2022). Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions. Blue-Green Systems, 4(2), 348-376. doi:10.2166/bgs.2022.028, Institutional Repository
Browne, S., Lintern, A., Jamali, B., Leitão, J. P., & Bach, P. M. (2021). Stormwater management impacts of small urbanising towns: The necessity of investigating the 'devil in the detail'. Science of the Total Environment, 757, 143835 (13 pp.). doi:10.1016/j.scitotenv.2020.143835, Institutional Repository
Figueroa, A., Hadengue, B., Leitão, J. P., Rieckermann, J., & Blumensaat, F. (2021). A distributed heat transfer model for thermal-hydraulic analyses in sewer networks. Water Research, 204, 117649 (11 pp.). doi:10.1016/j.watres.2021.117649, Institutional Repository
Guo, Z., Leitão, J. P., Simões, N. E., & Moosavi, V. (2021). Data-driven flood emulation: speeding up urban flood predictions by deep convolutional neural networks. Journal of Flood Risk Management, 14(1), e12684 (14 pp.). doi:10.1111/jfr3.12684, Institutional Repository
Jamali, B., Haghighat, E., Ignjatovic, A., Leitão, J. P., & Deletic, A. (2021). Machine learning for accelerating 2D flood models: potential and challenges. Hydrological Processes, 35(4), e14064 (14 pp.). doi:10.1002/hyp.14064, Institutional Repository
Joshi, P., Leitão, J. P., Maurer, M., & Bach, P. M. (2021). Not all SuDS are created equal: impact of different approaches on combined sewer overflows. Water Research, 191, 116780 (13 pp.). doi:10.1016/j.watres.2020.116780, Institutional Repository
Leite, A., & Leitão, J. (2021). The new town of Angra (Terceira, the Azores): confirming a contested urban planning history using reverse historical analysis and flood modelling tools. Urban History, 48(1), 20-36. doi:10.1017/S0963926819001093, Institutional Repository
Wang, W., Leitão, J. P., & Wani, O. (2021). Is flow control in a space-constrained drainage network effective? A performance assessment for combined sewer overflow reduction. Environmental Research, 202, 111688 (11 pp.). doi:10.1016/j.envres.2021.111688, Institutional Repository
Chaudhary, P., D'Aronco, S., Leitão, J. P., Schindler, K., & Wegner, J. D. (2020). Water level prediction from social media images with a multi-task ranking approach. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 252-262. doi:10.1016/j.isprsjprs.2020.07.003, Institutional Repository
Cheng, T., Xu, Z., Yang, H., Hong, S., & Leitao, J. P. (2020). Analysis of effect of rainfall patterns on urban flood process by coupled hydrological and hydrodynamic modeling. Journal of Hydrologic Engineering, 25(1), 04019061 (14 pp.). doi:10.1061/(ASCE)HE.1943-5584.0001867, Institutional Repository
Moy de Vitry, M., & Leitão, J. P. (2020). The potential of proxy water level measurements for calibrating urban pluvial flood models. Water Research, 175, 115669 (14 pp.). doi:10.1016/j.watres.2020.115669, Institutional Repository
Blumensaat, F., Leitão, J. P., Ort, C., Rieckermann, J., Scheidegger, A., Vanrolleghem, P. A., & Villez, K. (2019). How urban storm- and wastewater management prepares for emerging opportunities and threats: digital transformation, ubiquitous sensing, new data sources, and beyond – a horizon scan. Environmental Science and Technology, 53(15), 8488-8498. doi:10.1021/acs.est.8b06481, Institutional Repository
Boller, D., Moy de Vitry, M., Wegner, J. D., & Leitão, J. P. (2019). Automated localization of urban drainage infrastructure from public-access street-level images. Urban Water Journal, 16(7), 480-493. doi:10.1080/1573062X.2019.1687743, Institutional Repository
Chaudhary, P., D'Aronco, S., Moy de Vitry, M., Leitão, J. P., & Wegner, J. D. (2019). Flood-water level estimation from social media images. In G. Vosselman, S. J. Oude Elberink, & M. Y. Yang (Eds.), ISPRS annals of the photogrammetry, remote sensing and spatial information sciences: Vol. IV-2/W5. ISPRS geospatial week (pp. 5-12). doi:10.5194/isprs-annals-IV-2-W5-5-2019, Institutional Repository
Moy de Vitry, M. (2019). Public surveillance and the future of urban pluvial flood modelling (Doctoral dissertation). doi:10.3929/ethz-b-000397587, Institutional Repository
Moy de Vitry, M., Kramer, S., Wegner, J. D., & Leitão, J. P. (2019). Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network. Hydrology and Earth System Sciences, 23(11), 4621-4634. doi:10.5194/hess-23-4621-2019, Institutional Repository
Moy de Vitry, M., Schneider, M. Y., Wani, O., Manny, L., Leitão, J. P., & Eggimann, S. (2019). Smart urban water systems: what could possibly go wrong?. Environmental Research Letters, 14(8), 081001 (4 pp.). doi:10.1088/1748-9326/ab3761, Institutional Repository
Muñoz, D. F., Simões, N. E., de Sousa, L. M., Maluf, L., Sá Marques, A., & Leitão, J. P. (2019). Generalizing multi-reward functions aimed at identifying the best locations to install flow control devices in sewer systems. Urban Water Journal, 16(8), 564-574. doi:10.1080/1573062X.2019.1700284, Institutional Repository
Peña-Haro, S., Carrel, M., Lüthi, B., Wang, L., Dicht, S., & Leitão, J. P. (2019). Abflussmessungen mittels Videos. Einsatz von Webcams und Smartphones. Aqua & Gas, 99(10), 42-45. , Institutional Repository
Peña-Haro, S., Lüthi, B., Carrel, M., Scheidegger, A., de Vitry, M. M., & Leitão, J. P. (2019). Es überschwemmt und keiner sieht zu?! Oberflächenabflussmessungen im urbanen Raum mittels Videomaterial von Überwachungskameras. Aqua & Gas, 99(5), 44-50. , Institutional Repository
Tscheikner-Gratl, F., Caradot, N., Cherqui, F., Leitão, J. P., Ahmadi, M., Langeveld, J. G., … Clemens, F. (2019). Sewer asset management - state of the art and research needs. Urban Water Journal, 16(9), 662-675. doi:10.1080/1573062X.2020.1713382, Institutional Repository
Amado, C., Carvalho, G., Brito, R. S., Coelho, S. T., & Leitão, J. P. (2018). Analysing the importance of variables for sewer failure prediction. Urban Water Journal, 15(4), 338-345. doi:10.1080/1573062X.2018.1459748, Institutional Repository
Boller, D., Moy de Vitry, M., Wegner, J. D., & Leitão, J. P. (2018). Automatisierte Erfassung von Siedlungsentwässerungsinfrastruktur mittels Strassenbildern und eines künstlichen neuronalen Netzwerks. In T. G. Schmitt (Ed.), Schriftenreihe Wasser Infrastruktur Ressourcen: Vol. 1. Regenwasser in urbanen Räumen. aqua urbanica trifft RegenwasserTage 2018. Tagungsband (pp. 251-254). Kaiserslautern: Institut Wasser Infrastruktur Ressourcen. , Institutional Repository
Leitão, J. P., Peña, S., Lüthi, B., & Moy de Vitry, M. (2018). Automatisierte Erfassung von Siedlungsentwässerungsinfrastruktur mittels Strassenbildern und eines künstlichen neuronalen Netzwerks. In T. G. Schmitt (Ed.), Schriftenreihe Wasser Infrastruktur Ressourcen: Vol. 1. Regenwasser in urbanen Räumen. aqua urbanica trifft RegenwasserTage 2018. Tagungsband (pp. 269-272). Kaiserslautern: Institut Wasser Infrastruktur Ressourcen. , Institutional Repository
Leitão, J. P., Carbajal, J. P., Rieckermann, J., Simões, N. E., Sá Marques, A., & de Sousa, L. M. (2018). Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage. Journal of Hydrology, 556, 371-383. doi:10.1016/j.jhydrol.2017.11.020, Institutional Repository
Leitão, J. P., & de Sousa, L. M. (2018). Towards the optimal fusion of high-resolution Digital Elevation Models for detailed urban flood assessment. Journal of Hydrology, 561, 651-661. doi:10.1016/j.jhydrol.2018.04.043, Institutional Repository
Leitão, J. P., Peña-Haro, S., Lüthi, B., Scheidegger, A., & Moy de Vitry, M. (2018). Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry. Journal of Hydrology, 565, 791-804. doi:10.1016/j.jhydrol.2018.09.001, Institutional Repository
Moreira de Sousa, L., & Leitão, J. P. (2018). HexASCII: a file format for cartographical hexagonal rasters. Transactions in GIS, 22(1), 217-232. doi:10.1111/tgis.12304, Institutional Repository
Moreira de Sousa, L., & Leitão, J. P. (2018). Improvements to DEM merging with r.mblend. In C. Grueau, R. Laurini, & L. Ragia (Eds.), Proceedings of the 4th international conference on geographical information systems theory, applications and management (pp. 42-49). doi:10.5220/0006672500420049, Institutional Repository
Moy de Vitry, M., Schindler, K., Rieckermann, J., & Leitão, J. P. (2018). Sewer inlet localization in UAV image clouds: improving performance with multiview detection. Remote Sensing, 10(5), 706 (18 pp.). doi:10.3390/rs10050706, Institutional Repository
Carbajal, J. P., Leitão, J. P., Albert, C., & Rieckermann, J. (2017). Appraisal of data-driven and mechanistic emulators of nonlinear simulators: the case of hydrodynamic urban drainage models. Environmental Modelling and Software, 92, 17-27. doi:10.1016/j.envsoft.2017.02.006, Institutional Repository
Leitão, J. P., Simões, N. E., Pina, R. D., Ochoa-Rodriguez, S., Onof, C., & Sá Marques, A. (2017). Stochastic evaluation of the impact of sewer inlets’ hydraulic capacity on urban pluvial flooding. Stochastic Environmental Research and Risk Assessment, 31(8), 1907-1922. doi:10.1007/s00477-016-1283-x, Institutional Repository
Moreira de Sousa, L., & Leitão, J. P. (2017). Hex-utils: a tool set supporting HexASCII hexagonal rasters. In L. Ragia, J. G. Rocha, & R. Laurini (Eds.), Proceedings of the 3rd international conference on geographical information systems theory, applications and management (pp. 177-183). doi:10.5220/0006275801770183, Institutional Repository
Moy de Vitry, M., Dicht, S., & Leitão, J. P. (2017). floodX: urban flash flood experiments monitored with conventional and alternative sensors. Earth System Science Data, 9(2), 657-666. doi:10.5194/essd-9-657-2017, Institutional Repository
Santos, P., Amado, C., Coelho, S. T., & Leitão, J. P. (2017). Stochastic data mining tools for pipe blockage failure prediction. Urban Water Journal, 14(4), 343-353. doi:10.1080/1573062X.2016.1148178, Institutional Repository
Torres, M. N., Rodríguez, J. P., & Leitão, J. P. (2017). Geostatistical analysis to identify characteristics involved in sewer pipes and urban tree interactions. Urban Forestry and Urban Greening, 25, 36-42. doi:10.1016/j.ufug.2017.04.013, Institutional Repository
de Oliveira Girão, L. F., da Cruz Simões, N. E., Almeida de Sá Marques, J. A., Correia Leitão, J. P., & Pina, R. D. (2017). Modelação hidráulica e de qualidade da água dos sistemas de drenagem em meios urbanos. Hydraulic and water quality modelling of urban drainage systems. Engenharia Sanitária e Ambiental, 22(2), 351-360. doi:10.1590/s1413-41522016161318, Institutional Repository
FitzGerald, D. V. (2016). Taking into account future uncertainty when designing urban water supply systems: a flexible approach (Master thesis). 59 p. , Institutional Repository
Keller, C. (2016). Understanding the urban drainage system of Fehraltorf. Enhancing the reliability of Fehraltorf’s SWMM model through calibration (Master thesis). 30 p. , Institutional Repository
Leitão, J. P., Moy de Vitry, M., Scheidegger, A., & Rieckermann, J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences, 20(4), 1637-1653. doi:10.5194/hess-20-1637-2016, Institutional Repository
Leitão, J. P., Prodanović, D., & Maksimović, Č. (2016). Improving merge methods for grid-based digital elevation models. Computers and Geosciences, 88, 115-131. doi:10.1016/j.cageo.2016.01.001, Institutional Repository
Leitão, J. P., Coelho, S. T., Alegre, H., Cardoso, M. A., Silva, M. S., Ramalho, P., … Carriço, N. (2016). Moving urban water infrastructure asset management from science into practice. Urban Water Journal, 13(2), 133-141. doi:10.1080/1573062X.2014.939092, Institutional Repository
Scheidegger, A., Leitão, J. P., & Scholten, L. (2015). Statistical failure models for water distribution pipes – a review from a unified perspective. Water Research, 83, 237-247. doi:10.1016/j.watres.2015.06.027, Institutional Repository
Simões, N. E., Ochoa-Rodríguez, S., Wang, L. P., Pina, R. D., Marques, A. S., Onof, C., & Leitão, J. P. (2015). Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator. Water, 7(7), 3396-3406. doi:10.3390/w7073396, Institutional Repository
Tokarczyk, P., Leitao, J. P., Rieckermann, J., Schindler, K., & Blumensaat, F. (2015). High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery. Hydrology and Earth System Sciences, 19(10), 4215-4228. doi:10.5194/hess-19-4215-2015, Institutional Repository
Tokarczyk, P., Leitao, J. P., Rieckermann, J., Schindler, K., & Blumensaat, F. (2015). Nutzung von Drohnen und Luftbildern in der Siedlungswasserwirtschaft. Geomatik Schweiz, Géomatique Suisse, Geomatica Svizzera, 113(9), 346-350. doi:10.5169/seals-513919, Institutional Repository